Optimization of overtraining and overgeneralization

作者: G. Chakraborty , N. Shiratori , S. Noguchi

DOI: 10.1109/IJCNN.1993.714175

关键词: OvertrainingMathematicsClassifier (UML)Hidden layerRadial basis functionFinite setArtificial intelligenceClass membershipNeural network classifierPattern recognition

摘要: The task of any supervised classifier is to assign optimum boundaries in the input space, for different class membership. This done using informations from available set known samples. mapping sample position space further used classify unknown generally a finite set. A boundary exactly defined by those usually not best new We end up with an overfitted boundary, i.e. overtrained classifier, resulting poor classification therefore need smooth be able generalize Depending on number samples and dimension actual solution, there will certain amount smoothness, which generalization. In this paper, we focus problem. introduce some practical ways arrive at regards single hidden layer neural network radial basis function.

参考文章(10)
David Lowe, David S. Broomhead, Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks Complex Systems. ,vol. 2, pp. 321- 355 ,(1988)
M. J. D. Powell, Radial basis functions for multivariable interpolation: a review Algorithms for approximation. pp. 143- 167 ,(1987)
Mahesan Niranjan, Frank Fallside, Neural networks and radial basis functions in classifying static speech patterns Computer Speech & Language. ,vol. 4, pp. 275- 289 ,(1990) , 10.1016/0885-2308(90)90009-U
Martin Casdagli, Nonlinear prediction of chaotic time series Physica D: Nonlinear Phenomena. ,vol. 35, pp. 335- 356 ,(1989) , 10.1016/0167-2789(89)90074-2
Stuart Geman, Elie Bienenstock, René Doursat, Neural networks and the bias/variance dilemma Neural Computation. ,vol. 4, pp. 1- 58 ,(1992) , 10.1162/NECO.1992.4.1.1
G. Chakraborty, N. Shiratori, S. Noguchi, A quickly trained ANN with single hidden layer Gaussian units IEEE International Conference on Neural Networks. pp. 466- 472 ,(1993) , 10.1109/ICNN.1993.298602
Richard P Lippmann, William Y. Huang, Neural Net and Traditional Classifiers neural information processing systems. pp. 387- 396 ,(1987)
John Moody, Christian J. Darken, Fast learning in networks of locally-tuned processing units Neural Computation. ,vol. 1, pp. 281- 294 ,(1989) , 10.1162/NECO.1989.1.2.281
Peter E. Hart, Richard O. Duda, Pattern classification and scene analysis A Wiley-Interscience Publication. ,(1973)