作者: Mahesan Niranjan , Frank Fallside
DOI: 10.1016/0885-2308(90)90009-U
关键词: Computer science 、 Perceptron 、 Radial basis function network 、 Class (biology) 、 Radial basis function 、 Pattern recognition 、 Artificial neural network 、 Timit database 、 Artificial intelligence 、 Simple (abstract algebra) 、 Speech patterns 、 Speech recognition 、 Theoretical computer science 、 Human-Computer Interaction 、 Software
摘要: Abstract This paper compares the performances of three non-linear pattern classifiers in recognition static speech patterns. Two these are neural networks (Multi-layered perceptron and modified Kanerva model). The third is method Radial Basis Functions. A review several classification techniques similar to radial basis functions presented. class boundaries generated by different methods compared on simple two-dimensional examples. Experiments classifying eight vowels from a subset DARPA TIMIT database reported.