Estimation of ultimate torque capacity of the SFRC beams using ANN

作者: Serkan Engin , Onur Ozturk , Fuad Okay

DOI: 10.12989/SEM.2015.53.5.939

关键词: Artificial neural networkTorqueStructural engineeringTorsion (mechanics)Materials science

摘要:

参考文章(20)
Torsional Response of Reinforced Fibrous Concrete Beams Aci Structural Journal. ,vol. 86, pp. 36- 44 ,(1989) , 10.14359/2627
İlker Bekir Topçu, Mustafa Sarıdemir, Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic Computational Materials Science. ,vol. 41, pp. 305- 311 ,(2008) , 10.1016/J.COMMATSCI.2007.04.009
T.D.Gunneswara Rao, D.Rama Seshu, Torsion of steel fiber reinforced concrete members Cement and Concrete Research. ,vol. 33, pp. 1783- 1788 ,(2003) , 10.1016/S0008-8846(03)00174-1
R. Narayanan, A.S. Kareem-Palanjian, Steel fibre reinforced concrete beams in torsion International Journal of Cement Composites and Lightweight Concrete. ,vol. 5, pp. 235- 246 ,(1983) , 10.1016/0262-5075(83)90065-9
In-Hwan Yang, Changbin Joh, Jung Woo Lee, Byung-Suk Kim, Torsional behavior of ultra-high performance concrete squared beams Engineering Structures. ,vol. 56, pp. 372- 383 ,(2013) , 10.1016/J.ENGSTRUCT.2013.05.027
T.D. Gunneswara Rao, D. Rama Seshu, Analytical model for the torsional response of steel fiber reinforced concrete members under pure torsion Cement & Concrete Composites. ,vol. 27, pp. 493- 501 ,(2005) , 10.1016/J.CEMCONCOMP.2004.03.006
İlker Bekir Topçu, Ahmet Raif Boğa, Fatih Onur Hocaoğlu, Modeling corrosion currents of reinforced concrete using ANN Automation in Construction. ,vol. 18, pp. 145- 152 ,(2009) , 10.1016/J.AUTCON.2008.07.004
Rangachari Narayanan, Aram Sana Kareem‐Palanjian, Torsion in Beams Reinforced with Bars and Fibers Journal of Structural Engineering-asce. ,vol. 112, pp. 53- 66 ,(1986) , 10.1061/(ASCE)0733-9445(1986)112:1(53)
Adriana Trocoli Abdon Dantas, Mônica Batista Leite, Koji de Jesus Nagahama, Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks Construction and Building Materials. ,vol. 38, pp. 717- 722 ,(2013) , 10.1016/J.CONBUILDMAT.2012.09.026