Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT.

作者: Xabier Artaechevarria-Artieda , Daniel Perez-Martin , M Ceresa , G Biurrun , D Blanco

DOI: 10.1088/0031-9155/54/22/017

关键词: Preclinical imagingRespiratory systemReconstruction algorithmTomographyLung cancerAirway segmentationMedicineParenchymaPathologyFast marching method

摘要: Animal models of lung disease are gaining importance in understanding the underlying mechanisms diseases such as emphysema and cancer. Micro-CT allows vivo imaging these models, thus permitting study progression or effect therapeutic drugs longitudinal studies. Automated analysis micro-CT images can be helpful to understand physiology diseased lungs, especially when combined with measurements respiratory system input impedance. In this work, we present a fast robust murine airway segmentation reconstruction algorithm. The algorithm is based on propagating marching wavefront that, it grows, divides tree into segments. We devised number specific rules guarantee that front propagates only inside airways avoid leaking parenchyma. was tested normal mice, mouse model chronic inflammation emphysema. A comparison manual segmentations two independent observers shows specificity sensitivity values our method comparable inter-observer variability, radius mainstem bronchi reveal significant differences between healthy mice. Combining automatically segmented parameters constant phase provides extra information how affects function.

参考文章(35)
Vincent Castranova, William E. Wallace, Val Vallyathan, Silica and Silica-Induced Lung Diseases ,(1995)
Thomas Bülow, Cristian Lorenz, Steffen Renisch, A General Framework for Tree Segmentation and Reconstruction from Medical Volume Data medical image computing and computer assisted intervention. pp. 533- 540 ,(2004) , 10.1007/978-3-540-30135-6_65
Bram van Ginneken, Wouter Baggerman, Eva M. van Rikxoort, Robust Segmentation and Anatomical Labeling of the Airway Tree from Thoracic CT Scans Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008. ,vol. 11, pp. 219- 226 ,(2008) , 10.1007/978-3-540-85988-8_27
Frank Wilcoxon, Individual Comparisons by Ranking Methods Springer Series in Statistics. ,vol. 1, pp. 196- 202 ,(1992) , 10.1007/978-1-4612-4380-9_16
Rachel A Collins, Machiko Ikegami, Thomas R Korfhagen, Jeffrey A Whitsett, Peter D Sly, In Vivo Measurements of Changes in Respiratory Mechanics with Age in Mice Deficient in Surfactant Protein D Pediatric Research. ,vol. 53, pp. 463- 467 ,(2003) , 10.1203/01.PDR.0000049464.46191.BF
N. L. Ford, M. M. Thornton, D. W. Holdsworth, Fundamental image quality limits for microcomputed tomography in small animals. Medical Physics. ,vol. 30, pp. 2869- 2877 ,(2003) , 10.1118/1.1617353
Ernesto Bribiesca, An easy measure of compactness for 2D and 3D shapes Pattern Recognition. ,vol. 41, pp. 543- 554 ,(2008) , 10.1016/J.PATCOG.2007.06.029
Lijun Shi, Jacqueline Thiesse, Geoffrey McLennan, Eric A. Hoffman, Joseph M. Reinhardt, Three-dimensional murine airway segmentation in micro-CT images Medical Imaging 2007: Physiology, Function, and Structure from Medical Images. ,vol. 6511, pp. 651105- ,(2007) , 10.1117/12.711213
Lennart K. A. Lundblad, John Thompson-Figueroa, Gilman B. Allen, Lisa Rinaldi, Ryan J. Norton, Charles G. Irvin, Jason H. T. Bates, Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure. American Journal of Respiratory and Critical Care Medicine. ,vol. 175, pp. 768- 774 ,(2007) , 10.1164/RCCM.200610-1410OC