Polymers and g|φ|4 theory in four dimensions

作者: C.Aragão de Carvalho , S. Caracciolo , J. Fröhlich

DOI: 10.1016/0550-3213(83)90213-4

关键词: PhysicsScaling limitScalar field theoryScaling dimensionQuantum mechanicsLattice field theoryTrivialityScalingStatistical physicsScale invarianceCritical exponent

摘要: Abstract We investigate the approach to critical point and scaling limit of a variety models on four-dimensional lattice, including g | φ 4 theory self-avoiding random walk. Our results, both theoretical numerical, provide strong evidence for triviality logarithmic corrections mean field laws, as predicted by perturbative renormalization group. relate limit. numerical analysis is based novel, high-precision Monte Carlo technique.

参考文章(19)
Mathematical Problems in Theoretical Physics Mathematical Problems in Theoretical Physics. ,vol. 80, ,(1978) , 10.1007/3-540-08853-9
Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu, Two-Dimensional Ising Model as an Exactly Solvable Relativistic Quantum Field Theory: Explicit Formulas for n -Point Functions Physical Review Letters. ,vol. 38, pp. 793- 796 ,(1977) , 10.1103/PHYSREVLETT.38.793
J. Ginibre, General formulation of Griffiths' inequalities Communications in Mathematical Physics. ,vol. 16, pp. 310- 328 ,(1970) , 10.1007/BF01646537
Frank Wilczek, A. Jaffe, J. Gllmm, Quantum Physics: A Functional Integral Point of View ,(1981)
B. Berg, D. Foerster, Random paths and random surfaces on a digital computer Physics Letters B. ,vol. 106, pp. 323- 326 ,(1981) , 10.1016/0370-2693(81)90545-1
Charles M. Newman, Inequalities for Ising models and field theories which obey the Lee-Yang Theorem Communications in Mathematical Physics. ,vol. 41, pp. 1- 9 ,(1975) , 10.1007/BF01608542
Joel L. Lebowitz, GHS and other inequalities Communications in Mathematical Physics. ,vol. 35, pp. 87- 92 ,(1974) , 10.1007/BF01646608