MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package

作者: Jarrod D. Hadfield

DOI: 10.18637/JSS.V033.I02

关键词: Categorical variableMathematicsApplied mathematicsConditional probability distributionLinear predictor functionVariable-order Markov modelGeneralized linear mixed modelMathematical optimizationContrast (statistics)Linear regressionGeneralized linear model

摘要: … and iid R-structure, the latent variables are assumed to have the multivariate normal … multivariate normal proposal distribution entered at the previous value of lj with covariance matrix …

参考文章(34)
Timothy A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) Society for Industrial and Applied Mathematics. ,(2006)
Eugene Demidenko, Mixed Models: Theory and Applications ,(2004)
Charles E McCulloch, Shayle R Searle, John M Neuhaus, Generalized, Linear, and Mixed Models ,(2001)
Douglas M. Bates, Josae C. Pinheiro, Mixed-Effects Models in S and S-PLUS ,(2000)
J. D. HADFIELD, A. NUTALL, D. OSORIO, I. P. F. OWENS, Testing the phenotypic gambit: Phenotypic, genetic and environmental correlations of colour Journal of Evolutionary Biology. ,vol. 20, pp. 549- 557 ,(2007) , 10.1111/J.1420-9101.2006.01262.X
Heikki Haario, Eero Saksman, Johanna Tamminen, An adaptive Metropolis algorithm Bernoulli. ,vol. 7, pp. 223- 242 ,(2001) , 10.2307/3318737
Scott L Zeger, M. Rezaul Karim, Generalized Linear Models with Random Effects; a Gibbs Sampling Approach Journal of the American Statistical Association. ,vol. 86, pp. 79- 86 ,(1991) , 10.1080/01621459.1991.10475006
Mary Kathryn Cowles, Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models Statistics and Computing. ,vol. 6, pp. 101- 111 ,(1996) , 10.1007/BF00162520