Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast

作者: Vivek J. Srinivasan , Harsha Radhakrishnan , James Y. Jiang , Scott Barry , Alex E. Cable

DOI: 10.1364/OE.20.002220

关键词: Preclinical imagingIn vivoOptical coherence tomographyDepolarizationImage processingOpticsNeocortexMaterials scienceCerebral cortexMicroscopy

摘要: In vivo optical microscopic imaging techniques have recently emerged as important tools for the study of neurobiological development and pathophysiology. particular, two-photon microscopy has proved to be a robust highly flexible method in scattering tissue. However, typically requires extrinsic dyes or contrast agents, depths are limited few hundred microns. Here we demonstrate Optical Coherence Microscopy (OCM) neuronal cell bodies cortical myelination up ~1.3 mm rat neocortex. Imaging does not require administration exogenous is achieved through intrinsic image processing alone. Furthermore, using OCM vivo, quantitative measurements properties (index refraction attenuation coefficient) cortex, correlate these with laminar cellular architecture determined from images. Lastly, show that enables direct visualization changes during depolarization may therefore provide novel markers viability.

参考文章(43)
Wonshik Choi, Christopher Fang-Yen, Kamran Badizadegan, Seungeun Oh, Niyom Lue, Ramachandra R Dasari, Michael S Feld, Tomographic phase microscopy Nature Methods. ,vol. 4, pp. 717- 719 ,(2008) , 10.1038/NMETH1078
P.J. Basser, J. Mattiello, D. LeBihan, MR diffusion tensor spectroscopy and imaging. Biophysical Journal. ,vol. 66, pp. 259- 267 ,(1994) , 10.1016/S0006-3495(94)80775-1
Patrick Theer, Mazahir T. Hasan, Winfried Denk, Two-photon imaging to a depth of 1000 µm microm in living brains by use of a Ti:Al2O3 regenerative amplifier Optics Letters. ,vol. 28, pp. 1022- 1024 ,(2003) , 10.1364/OL.28.001022
Ruikang K Wang, Steven L Jacques, Zhenhe Ma, Sawan Hurst, Stephen R Hanson, Andras Gruber, None, Three dimensional optical angiography. Optics Express. ,vol. 15, pp. 4083- 4097 ,(2007) , 10.1364/OE.15.004083
Kent F. Palmer, Dudley Williams, Optical properties of water in the near infrared. Journal of the Optical Society of America. ,vol. 64, pp. 1107- 1110 ,(1974) , 10.1364/JOSA.64.001107
Maciej Wojtkowski, Vivek J. Srinivasan, Tony H. Ko, James G. Fujimoto, Andrzej Kowalczyk, Jay S. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express. ,vol. 12, pp. 2404- 2422 ,(2004) , 10.1364/OPEX.12.002404
Van J. Wedeen, Patric Hagmann, Wen-Yih Isaac Tseng, Timothy G. Reese, Robert M. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine. ,vol. 54, pp. 1377- 1386 ,(2005) , 10.1002/MRM.20642
L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, M. S. Feld, Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution Physical Review Letters. ,vol. 80, pp. 627- 630 ,(1998) , 10.1103/PHYSREVLETT.80.627
R.David Andrew, Cathryn R. Jarvis, Akef S. Obeidat, Potential Sources of Intrinsic Optical Signals Imaged in Live Brain Slices Methods. ,vol. 18, pp. 185- 196 ,(1999) , 10.1006/METH.1999.0771
Ravikant Samatham, Steven L. Jacques, Paul Campagnola, Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM). Journal of Biomedical Optics. ,vol. 13, pp. 041309- ,(2008) , 10.1117/1.2953195