ON METRIC MULTIDIMENSIONAL UNFOLDING

作者: Peter H. Scho̎nemann

DOI: 10.1002/J.2333-8504.1969.TB00773.X

关键词: Least squaresMetric (mathematics)Euclidean distance matrixPure mathematicsMathematicsCombinatoricsEuclidean distanceSpace (mathematics)Euclidean geometry

摘要: The problem of locating two sets points in a joint space, given the Euclidean distances between elements from distinct sets, is solved algebraically. For error free data solution exact, for fallible it has least squares properties.

参考文章(13)
Clyde Hamilton Coombs, R. C. Kao, Nonmetric factor analysis Engineering Research Institute, University of Michigan. ,(1955)
William L. Hays, Joseph F. Bennett, Multidimensional unfolding: Determining configuration from complete rank order preference data Psychometrika. ,vol. 26, pp. 221- 238 ,(1961) , 10.1007/BF02289716
Clyde H. Coombs, Richard C. Kao, On a connection between factor analysis and multidimensional unfolding Psychometrika. ,vol. 25, pp. 219- 231 ,(1960) , 10.1007/BF02289726
David H. Krantz, Rational distance functions for multidimensional scaling Journal of Mathematical Psychology. ,vol. 4, pp. 226- 245 ,(1967) , 10.1016/0022-2496(67)90051-X
John Ross, Norman Cliff, A generalization of the interpoint distance model Psychometrika. ,vol. 29, pp. 167- 176 ,(1964) , 10.1007/BF02289698
Carl Eckart, Gale Young, The approximation of one matrix by another of lower rank Psychometrika. ,vol. 1, pp. 211- 218 ,(1936) , 10.1007/BF02288367
Joseph F. Bennett, William L. Hays, Multidimensional unfolding: Determining the dimensionality of ranked preference data Psychometrika. ,vol. 25, pp. 27- 43 ,(1960) , 10.1007/BF02288932