Sparse Dynamic Programming for Evolutionary-Tree Comparison

作者: Martin Farach , Mikkel Thorup

DOI: 10.1137/S0097539794262422

关键词: Discrete mathematicsUnary operationBipartite graphMathematicsTime complexityBounded functionCombinatoricsSet (abstract data type)Dynamic programmingGraph theoryBinary logarithmGeneral Computer ScienceGeneral Mathematics

摘要: Constructing evolutionary trees for species sets is a fundamental problem in biology. Unfortunately, there no single agreed upon method this task, and many methods are use. Current practice dictates that be constructed using different the resulting should compared consensus. It has become necessary to automate process as number of under consideration grown. We study one formalization problem: maximum agreement-subtree $($\MAST$)$ problem. The $\MAST$ follows: given set $A$ two rooted $\cT_0$ $\cT_1$ leaf-labeled by elements $A$, find maximum-cardinality subset $B$ such topological restrictions isomorphic. In paper, we will show reduces unary weighted bipartite matching ($\UWBM$) with an $O(n^{1+o(1)})$ additive overhead. also $\UWBM$ linearly $\MAST$. Thus our algorithm optimal unless can solved near linear time. The overall running time $O(n^{1.5} \log n)$, improving on previous best algorithm, which runs $O(n^2)$. derive $O(n c^{\sqrt{\log n}})$-time case bounded degrees, whereas previously $O(n^2),$ unbounded case.

参考文章(18)
Harold Todd Wareham, On the computational complexity of inferring evolutionary trees Memorial University of Newfoundland. ,(1992)
Mike Steel, Tandy Warnow, Kaikoura tree theorems: computing the maximum agreement subtree Information Processing Letters. ,vol. 48, pp. 77- 82 ,(1993) , 10.1016/0020-0190(93)90181-8
Harold N. Gabow, Robert E. Tarjan, Faster scaling algorithms for network problems SIAM Journal on Computing. ,vol. 18, pp. 1013- 1036 ,(1989) , 10.1137/0218069
Ewa Kubicka, Grzegorz Kubicki, F. R. McMorris, An algorithm to find agreement subtrees Journal of Classification. ,vol. 12, pp. 91- 99 ,(1995) , 10.1007/BF01202269
M. Farach, S. Kannan, T. Warnow, A robust model for finding optimal evolutionary trees Algorithmica. ,vol. 13, pp. 155- 179 ,(1995) , 10.1007/BF01188585
C. R. Finden, A. D. Gordon, Obtaining common pruned trees Journal of Classification. ,vol. 2, pp. 255- 276 ,(1985) , 10.1007/BF01908078
William H. E. Day, Foreword: Comparison and consensus of classifications Journal of Classification. ,vol. 3, pp. 183- 185 ,(1986) , 10.1007/BF01894187
W. M. Fitch, E. Margoliash, Construction of Phylogenetic Trees Science. ,vol. 155, pp. 279- 284 ,(1967) , 10.1126/SCIENCE.155.3760.279
F Hwang D Richards, FK Hwang, W Winter, Steiner tree problems Networks. ,vol. 22, pp. 55- 89 ,(1992) , 10.1002/NET.3230220105
Tandy Warnow, Sampath Kannan, Eugene Lawler, Determining the evolutionary tree symposium on discrete algorithms. pp. 475- 484 ,(1990) , 10.5555/320176.320234