Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations

作者: Eduardo Casas , Jean‐Pierre Raymond

DOI: 10.1137/050626600

关键词: Mathematical analysisElliptic partial differential equationBoundary (topology)PointwiseBoundary value problemFinite element methodOptimal controlMathematicsPartial differential equationDomain (mathematical analysis)

摘要: … optimal control problem governed by a semilinear elliptic equation. The control is the Dirichlet datum on the boundary … Bound constraints are imposed on the control. The cost functional …

参考文章(36)
M. D. Gunzburger, L. S. Hou, Th. P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls Mathematical Modelling and Numerical Analysis. ,vol. 25, pp. 711- 748 ,(1991) , 10.1051/M2AN/1991250607111
Tunc Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique. ,vol. 13, pp. 313- 328 ,(1979) , 10.1051/M2AN/1979130403131
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
José Barros-Neto, Problèmes aux limites non homogènes Presses de l'Université de Montréal. ,(1966)
William W. Hager, Numerical Analysis in Optimal Control Birkhäuser, Basel. pp. 83- 93 ,(2001) , 10.1007/978-3-0348-8148-7_7
M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case Computational Optimization and Applications. ,vol. 30, pp. 45- 61 ,(2005) , 10.1007/S10589-005-4559-5