A Priori Error Analysis for the Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems

作者: S. May , R. Rannacher , B. Vexler

DOI: 10.1007/978-3-540-69777-0_76

关键词:

摘要: This article presents recent results of an a priori error analysis for the finite element approximation Dirichlet boundary control problems governed by elliptic partial differential equations. For standard model problem estimates are proven primal variable, control, as well associated adjoint variable. These optimal order with respect to solution’s regularity be expected on polygonal domains. The proofs rely Euler-Lagrange formulation and employ duality techniques optimal-order L p Ritz projection. improve corresponding in literature supported computational experiments. details contained [9].

参考文章(7)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Jacques Louis Lions, Enrico Magenes, Non-homogeneous boundary value problems and applications ,(1972)
K. Kunisch, B. Vexler, Constrained Dirichlet Boundary Control in $L^2$ for a Class of Evolution Equations Siam Journal on Control and Optimization. ,vol. 46, pp. 1726- 1753 ,(2007) , 10.1137/060670110
Eduardo Casas, Jean‐Pierre Raymond, Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations Siam Journal on Control and Optimization. ,vol. 45, pp. 1586- 1611 ,(2006) , 10.1137/050626600
Rolf Rannacher, Ridgway Scott, Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations Mathematics of Computation. ,vol. 38, pp. 437- 445 ,(1982) , 10.1090/S0025-5718-1982-0645661-4
Martin Berggren, Approximations of Very Weak Solutions to Boundary-Value Problems SIAM Journal on Numerical Analysis. ,vol. 42, pp. 860- 877 ,(2004) , 10.1137/S0036142903382048