Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations

作者: Rolf Rannacher , Ridgway Scott

DOI: 10.1090/S0025-5718-1982-0645661-4

关键词:

摘要: It is shown that the Ritz projection onto spaces of piecewise linear finite elements bounded in Sobolev space, Wl, for 2 - p < oc. This implies functions wf n W2 error approximation behaves like 0(h) Wp, ? oo, and 0(h2) Lp, oo. In all these cases additional logarithmic factor previously included estimates does not occur.

参考文章(7)
Pierre Grisvard, BEHAVIOR OF THE SOLUTIONS OF AN ELLIPTIC BOUNDARY VALUE PROBLEM IN A POLYGONAL OR POLYHEDRAL DOMAIN Numerical Solution of Partial Differential Equations–III#R##N#Proceedings of the Third Symposium on the Numerical Solution of Partial Differential Equations, SYNSPADE 1975, Held at the University of Maryland, College Park, Maryland, May 19–24, 1975: SYNSPADE 1975. pp. 207- 274 ,(1976) , 10.1016/B978-0-12-358503-5.50013-0
Joachim Nitsche, L∞-convergence of finite element approximations Springer Berlin Heidelberg. pp. 261- 274 ,(1977) , 10.1007/BFB0064468
Frank Natterer, Über die punktweise Konvergenz Finiter Elemente Numerische Mathematik. ,vol. 25, pp. 67- 77 ,(1975) , 10.1007/BF01419529
Dennis Jespersen, Ritz–Galerkin Methods for Singular Boundary Value Problems SIAM Journal on Numerical Analysis. ,vol. 15, pp. 813- 834 ,(1978) , 10.1137/0715054
A. H. Schatz, L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I Mathematics of Computation. ,vol. 32, pp. 73- 109 ,(1978) , 10.1090/S0025-5718-1978-0502065-1
Ridgway Scott, Optimal ^{∞} estimates for the finite element method on irregular meshes Mathematics of Computation. ,vol. 30, pp. 681- 697 ,(1976) , 10.1090/S0025-5718-1976-0436617-2
Isaac Fried, On the optimality of the pointwise accuracy of the finite element solution International Journal for Numerical Methods in Engineering. ,vol. 15, pp. 451- 456 ,(1980) , 10.1002/NME.1620150311