Ricci flows connecting Taub–Bolt and Taub–NUT metrics

作者: Gustav Holzegel , Thomas Schmelzer , Claude Warnick

DOI: 10.1088/0264-9381/24/24/004

关键词: PhysicsEuclidean geometryBoundary (topology)Metric (mathematics)ManifoldMathematical physicsPoint (geometry)Ricci flowFlow (mathematics)Symmetry (geometry)

摘要: We use the Ricci flow with surgery to study four-dimensional SU(2) × U(1)-symmetric metrics on a manifold fixed boundary given by squashed 3-sphere. Depending initial metric we show that converges either Taub–Bolt or Taub–NUT metric, latter case potentially requiring at some point in evolution. The allows us explore Euclidean action landscape within this symmetry class. This work extends recent of Headrick and Wiseman (2006 Class. Quantum Grav. 23 6683) more interesting topologies.

参考文章(14)
Richard S. Hamilton, Three-manifolds with positive Ricci curvature Journal of Differential Geometry. ,vol. 17, pp. 255- 306 ,(1982) , 10.4310/JDG/1214436922
Dennis M. DeTurck, Deforming metrics in the direction of their Ricci tensors Journal of Differential Geometry. ,vol. 18, pp. 157- 162 ,(1983) , 10.4310/JDG/1214509286
Ying Shen, On Ricci deformation of a Riemannian metric on manifold with boundary Pacific Journal of Mathematics. ,vol. 173, pp. 203- 221 ,(1996) , 10.2140/PJM.1996.173.203
Claude Warnick, Semi-classical stability of AdS NUT instantons Classical and Quantum Gravity. ,vol. 23, pp. 3801- 3817 ,(2006) , 10.1088/0264-9381/23/11/008
Bengt Fornberg, A Pseudospectral Approach for Polar and Spherical Geometries SIAM Journal on Scientific Computing. ,vol. 16, pp. 1071- 1081 ,(1995) , 10.1137/0916061
Richard Hamilton, The formations of singularities in the Ricci Flow Surveys in differential geometry. ,vol. 2, pp. 7- 136 ,(1993) , 10.4310/SDG.1993.V2.N1.A2
R. E. Young, Semiclassical stability of asymptotically locally flat spaces Physical Review D. ,vol. 28, pp. 2420- 2435 ,(1983) , 10.1103/PHYSREVD.28.2420
G. W. Gibbons, S. W. Hawking, Classification of gravitational instanton symmetries Communications in Mathematical Physics. ,vol. 66, pp. 291- 310 ,(1979) , 10.1007/BF01197189
O. Ladyženskaja, V. Solonnikov, N. Ural′ceva, Linear and Quasi-linear Equations of Parabolic Type Translations of Mathematical#N# Monographs. ,vol. 23, ,(1968) , 10.1090/MMONO/023
G.W. Gibbons, S.W. Hawking, M.J. Perry, Path integrals and the indefiniteness of the gravitational action Nuclear Physics B. ,vol. 138, pp. 141- 150 ,(1978) , 10.1016/0550-3213(78)90161-X