作者: Gustav Holzegel , Thomas Schmelzer , Claude Warnick
DOI: 10.1088/0264-9381/24/24/004
关键词: Physics 、 Euclidean geometry 、 Boundary (topology) 、 Metric (mathematics) 、 Manifold 、 Mathematical physics 、 Point (geometry) 、 Ricci flow 、 Flow (mathematics) 、 Symmetry (geometry)
摘要: We use the Ricci flow with surgery to study four-dimensional SU(2) × U(1)-symmetric metrics on a manifold fixed boundary given by squashed 3-sphere. Depending initial metric we show that converges either Taub–Bolt or Taub–NUT metric, latter case potentially requiring at some point in evolution. The allows us explore Euclidean action landscape within this symmetry class. This work extends recent of Headrick and Wiseman (2006 Class. Quantum Grav. 23 6683) more interesting topologies.