Two-dimensional current algebras and affine fusion product

作者: B. Feigin , E. Feigin

DOI: 10.1016/J.JALGEBRA.2006.11.039

关键词: Kac–Moody algebraQuantum affine algebraAffine Lie algebraMathematicsQuantum groupAffine transformationAffine representationAlgebraNon-associative algebraAlgebra representation

摘要: In this paper we study a family of commutative algebras generated by two infinite sets generators. These are parametrized Young diagrams. We explain connection these with the fusion product integrable irreducible representations affine sl2 Lie algebra. As an application derive fermionic formula for character modules. products can be considered as simplest example double Demazure

参考文章(21)
A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, Semi-Infinite Realization of Unitary Representations of the N=2 Algebra and Related Constructions Theoretical and Mathematical Physics. ,vol. 126, pp. 1- 47 ,(2001) , 10.1023/A:1005286813871
B. Feigin, E. Feigin, Principal subspace for the bosonic vertex operator ϕ2m(z) and Jack polynomials Advances in Mathematics. ,vol. 206, pp. 307- 328 ,(2006) , 10.1016/J.AIM.2005.09.001
Pierre Mathieu, David Sénéchal, Philippe Di Francesco, Conformal Field Theory ,(1996)
B.L. Feigin, I.Yu. Tipunin, S.A. Loktev, Coinvariants for Lattice VOAs and q-Supernomial Coefficients Communications in Mathematical Physics. ,vol. 229, pp. 271- 292 ,(2002) , 10.1007/S00220-002-0690-7
A. V. Stoyanovsky, Boris Feigin, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold arXiv: High Energy Physics - Theory. ,(1993)
B. Feigin, A. N. Kirillov, S. Loktev, Combinatorics and Geometry of Higher Level Weyl Modules arXiv: Quantum Algebra. ,(2005)
Victor G. Kac, Vertex algebras for beginners ,(1997)
Edward Vladimir Frenkel, David Ben-Zvi, Vertex Algebras and Algebraic Curves ,(2000)