Principal subspace for the bosonic vertex operator ϕ2m(z) and Jack polynomials

作者: B. Feigin , E. Feigin

DOI: 10.1016/J.AIM.2005.09.001

关键词: Basis (universal algebra)Lattice (group)Operator (physics)Vertex operator algebraMathematicsPrincipal subspaceCombinatoricsIrreducible representationVertex (graph theory)

摘要: Abstract Let ϕ 2 m ( z ) = ∑ n ∈ Z a − , N be bosonic vertex operator and L some irreducible representation of the algebra A associated with one-dimensional lattice l 〈 〉 . Fix extremal vector v We study principal subspace C [ i ] ⋅ its finitization > construct their bases find characters. In case finitization, basis is given in terms Jack polynomials.

参考文章(14)
A. M. Semikhatov, I. Yu. Tipunin, B. L. Feigin, Semi-Infinite Realization of Unitary Representations of the N=2 Algebra and Related Constructions Theoretical and Mathematical Physics. ,vol. 126, pp. 1- 47 ,(2001) , 10.1023/A:1005286813871
正樹 柏原, 哲二 三輪, Barry M. McCoy, MathPhys odyssey 2001 : integrable models and beyond : in honor of Barry M. McCoy Birkhäuser. ,(2002)
Boris L. Feigin, Michio Jimbo, Tetsuji Miwa, Vertex Operator Algebra Arising from the Minimal Series M(3,p) and Monomial Basis arXiv: Quantum Algebra. pp. 179- 204 ,(2002) , 10.1007/978-1-4612-0087-1_8
A. V. Stoyanovsky, Boris Feigin, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold arXiv: High Energy Physics - Theory. ,(1993)
Victor G. Kac, Vertex algebras for beginners ,(1997)
Edward Vladimir Frenkel, David Ben-Zvi, Vertex Algebras and Algebraic Curves ,(2000)
Vyjayanthi Chari, Andrew Pressley, Weyl modules for classical and quantum affine algebras Representation Theory of The American Mathematical Society. ,vol. 5, pp. 191- 223 ,(2001) , 10.1090/S1088-4165-01-00115-7
B. Feigin, S. Loktev, On generalized Kostka polynomials and quantum Verlinde rule arXiv: Quantum Algebra. ,(1998)
C.Y. Dong, Vertex Algebras Associated with Even Lattices Journal of Algebra. ,vol. 161, pp. 245- 265 ,(1993) , 10.1006/JABR.1993.1217
Katsuhisa Mimachi, Yasuhiko Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials Communications in Mathematical Physics. ,vol. 174, pp. 447- 455 ,(1995) , 10.1007/BF02099610