Vertex Operator Algebra Arising from the Minimal Series M(3,p) and Monomial Basis

作者: Boris L. Feigin , Michio Jimbo , Tetsuji Miwa

DOI: 10.1007/978-1-4612-0087-1_8

关键词:

摘要: We study a vertex operator algebra (VOA)Vrelated to the M(3, p) Virasoro minimal series. This VOA reduces in simplest case p = 4 level-two integrable vacuum module of \({\widehat {sl}_2}\). On V there is an action commutative current a(z), which analog e(z) Our main concern subspace W generated by this from highest weight vector V. Using Fourier components we present monomial basis and semi-infinite also give Gordon type formula for their characters.

参考文章(6)
Boris Feigin, Tetsuji Miwa, Extended vertex operator algebras and monomial bases arXiv: Quantum Algebra. ,(1999)
Victor G. Kac, Vertex algebras for beginners ,(1997)
Omar Foda, Keith S. M. Lee, Yaruslav Pugai, Trevor A. Welsh, Path generating transforms arXiv: Quantum Algebra. ,(1998)
Alexander Berkovich, Barry M. McCoy, Anne Schilling, Rogers-Schur-Ramanujan Type Identities for the M(p,p') Minimal Models of Conformal Field Theory Communications in Mathematical Physics. ,vol. 191, pp. 325- 395 ,(1998) , 10.1007/S002200050271
A. V. Stoyanovsky, B. L. Feigin, Functional models for representations of current algebras and semi-infinite Schubert cells Functional Analysis and Its Applications. ,vol. 28, pp. 55- 72 ,(1994) , 10.1007/BF01079010