Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials

作者: Katsuhisa Mimachi , Yasuhiko Yamada

DOI: 10.1007/BF02099610

关键词:

摘要: We present an explicit formula of the Virasoro singular vectors in terms Jack symmetric polynomials. The parametert central chargec=13-6(t+1/t) is just identified with deformation parameter α polynomialsJγ(α). As a by-product, we obtain integral representation polynomials indexed by rectangular Young diagrams.

参考文章(9)
I.G. Macdonald, A new class of symmetric functions. Séminaire Lotharingien de Combinatoire [electronic only]. ,vol. 20, ,(1988)
Minoru Wakimoto, Hirofumi Yamada, The Fock representations of the Virasoro algebra and the Hirota equations of the modified KP hierarchies Hiroshima Mathematical Journal. ,vol. 16, pp. 427- 441 ,(1986) , 10.32917/HMJ/1206130440
I. G. Macdonald, Commuting differential operators and zonal spherical functions Lecture Notes in Mathematics. pp. 189- 200 ,(1987) , 10.1007/BFB0079238
Giovanni Felder, BRST approach to minimal models Nuclear Physics B. ,vol. 317, pp. 215- 236 ,(1989) , 10.1016/0550-3213(89)90568-3
M. Bauer, Ph. Di Francesco, C. Itzykson, J.-B. Zuber, Covariant differential equations and singular vectors in virasoro representations Nuclear Physics B. ,vol. 362, pp. 515- 562 ,(1991) , 10.1016/0550-3213(91)90541-5
Akihiro Tsuchiya, Yukihiro Kanie, Fock space representations of the Virasoro algebra. Intertwining operators Publications of the Research Institute for Mathematical Sciences. ,vol. 22, pp. 259- 327 ,(1986) , 10.2977/PRIMS/1195178069
P. Goddard, A. Kent, D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras Communications in Mathematical Physics. ,vol. 103, pp. 105- 119 ,(1986) , 10.1007/BF01464283
Richard P Stanley, Some combinatorial properties of Jack symmetric functions Advances in Mathematics. ,vol. 77, pp. 76- 115 ,(1989) , 10.1016/0001-8708(89)90015-7
Ian Grant Macdonald, Symmetric functions and Hall polynomials ,(1979)