Mellin transforms of correlation integrals and generalized dimension of strange sets.

作者: D. Bessis , J. D. Fournier , G. Servizi , G. Turchetti , S. Vaienti

DOI: 10.1103/PHYSREVA.36.920

关键词: Mellin transformAbscissaPhysicsDimension (graph theory)Mellin inversion theoremEnergy (signal processing)Hausdorff dimensionPure mathematicsOrder (ring theory)Two-sided Laplace transform

摘要: The Mellin transform of the correlation integral is introduced and proved to be equal energy whose divergence abscissa a lower bound Hausdorff dimension. For some Julia sets exact results are obtained. linear Cantor on real axis it shown that meromorphic, pole, determining abscissa, has sequence satellite poles equally spaced line parallel imaginary axis, which explain oscillations observed in numerical calculations integral. order-d generalized integrals as transforms for they have same singularities ordinary integrals. Letting ${r}_{d}$ residue pole corresponding ${\mathrm{lim}}_{\mathrm{d}\ensuremath{\rightarrow}\mathrm{\ensuremath{\infty}}}$(-${\mathrm{d}}^{\mathrm{\ensuremath{-}}1}$ln${r}_{d}$) second Renyi entropy. Some obtained discussed.

参考文章(11)
David Ruelle, Repellers for real analytic maps Ergodic Theory and Dynamical Systems. ,vol. 2, pp. 99- 107 ,(1982) , 10.1017/S0143385700009603
J. -P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors Reviews of Modern Physics. ,vol. 57, pp. 617- 656 ,(1985) , 10.1103/REVMODPHYS.57.617
D. Bessis, J. S. Geronimo, P. Moussa, Meblin transforms associated with Julia sets and physical applications Journal of Statistical Physics. ,vol. 34, pp. 75- 110 ,(1984) , 10.1007/BF01770350
R. Badii, A. Politi, Intrinsic oscillations in measuring the fractal dimension Physics Letters A. ,vol. 104, pp. 303- 305 ,(1984) , 10.1016/0375-9601(84)90801-6
L.A. Smith, J.-D. Fournier, E.A. Spiegel, Lacunarity and intermittency in fluid turbulence Physics Letters A. ,vol. 114, pp. 465- 468 ,(1986) , 10.1016/0375-9601(86)90695-X
Peter Grassberger, Itamar Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal Physical Review A. ,vol. 28, pp. 2591- 2593 ,(1983) , 10.1103/PHYSREVA.28.2591
Itamar Procaccia, Aviad Cohen, Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems Physical Review A. ,vol. 31, pp. 1872- 1882 ,(1985) , 10.1103/PHYSREVA.31.1872
Hans Brolin, Invariant sets under iteration of rational functions Arkiv för Matematik. ,vol. 6, pp. 103- 144 ,(1965) , 10.1007/BF02591353
M. Hénon, A Two-dimensional Mapping with a Strange Attractor Communications in Mathematical Physics. ,vol. 50, pp. 69- 77 ,(1976) , 10.1007/BF01608556
Steve Pelikan, A dynamical meaning of fractal dimension Transactions of the American Mathematical Society. ,vol. 292, pp. 695- 703 ,(1985) , 10.1090/S0002-9947-1985-0808747-6