Repellers for real analytic maps

作者: David Ruelle

DOI: 10.1017/S0143385700009603

关键词:

摘要: The purpose of this note is to prove a conjecture D. Sullivan that when the Julia set J rational function f hyperbolic, Hausdorff dimension depends real analytically on f. We shall obtain as corollary general result repellers analytic maps (see 5).

参考文章(14)
Ethan M. Coven, William L. Reddy, Positively expansive maps of compact manifolds Global Theory of Dynamical Systems. ,vol. 819, pp. 96- 110 ,(1980) , 10.1007/BFB0086982
Rufus Bowen, Hausdorff dimension of quasi-circles Publications Mathématiques de l'IHÉS. ,vol. 50, pp. 11- 25 ,(1979) , 10.1007/BF02684767
Su-shing Chen, Anthony Manning, The convergence of zeta functions for certain geodesic flows depends on their pressure Mathematische Zeitschrift. ,vol. 176, pp. 379- 382 ,(1981) , 10.1007/BF01214614
Ya. G. Sinai, Construction of Markov partitions Functional Analysis and Its Applications. ,vol. 2, pp. 245- 253 ,(1969) , 10.1007/BF01076126
D. Ruelle, Generalized zeta-functions for Axiom ${\text{A}}$ basic sets Bulletin of the American Mathematical Society. ,vol. 82, pp. 153- 157 ,(1976) , 10.1090/S0002-9904-1976-14003-7
David Ruelle, Zeta-functions for expanding maps and Anosov flows Inventiones Mathematicae. ,vol. 34, pp. 231- 242 ,(1976) , 10.1007/BF01403069
Peter Walters, A Variational Principle for the Pressure of Continuous Transformations American Journal of Mathematics. ,vol. 97, pp. 937- ,(1975) , 10.2307/2373682
Dennis Sullivan, Discrete conformal groups and measurable dynamics Bulletin of the American Mathematical Society. ,vol. 6, pp. 57- 73 ,(1982) , 10.1090/S0273-0979-1982-14966-7