Resonances of the Fabry‐Perot Laser

作者: S. R. Barone

DOI: 10.1063/1.1729547

关键词: Quantum mechanicsFabry–Pérot interferometerOscillationResonanceIntegral equationPhysicsWave functionWave propagationAsymptotic expansionInterferometryGeneral Physics and Astronomy

摘要: The optical mode structure of a Fabry—Perot interferometer‐resonator composed two infinite strip mirrors is investigated from the point view general theory nonspectral resonances. It shown that classical description this configuration inadequate to describe its response highly monochromatic laser radiation and must be supplemented by discussion transverse resonance behavior. This introduces fine rings implies discrete behavior for interferometer. In analogy characterization quantum‐mechanical virtual levels wavefunctions complex energies it convenient characterize resonances functions resonant frequencies. On basis reformulation asymptotic expansion previously given stationary expression, in high‐frequency limit, open sides can replaced an effective impedance boundary condition. solution elementary problem then yields analytic approximations shapes, characteristic oscillation frequencies, modal lifetimes. common domain validity these results are excellent agreement with previous numerical work on problem.

参考文章(9)
Richard Courant, David Hilbert, Methods of Mathematical Physics ,(1947)
A. G. Fox, Tingye Li, Resonant Modes in a Maser Interferometer Bell System Technical Journal. ,vol. 40, pp. 453- 488 ,(1961) , 10.1002/J.1538-7305.1961.TB01625.X
J. Kotik, M. C. Newstein, Theory of LASER Oscillations in Fabry‐Perot Resonators Journal of Applied Physics. ,vol. 32, pp. 178- 186 ,(1961) , 10.1063/1.1735974
C. L. Dolph, Recent developments in some non-self-adjoint problems of mathematical physics Bulletin of the American Mathematical Society. ,vol. 67, pp. 1- 70 ,(1961) , 10.1090/S0002-9904-1961-10493-X
G. D. Boyd, J. P. Gordon, Confocal Multimode Resonator for Millimeter Through Optical Wavelength Masers Bell System Technical Journal. ,vol. 40, pp. 489- 508 ,(1961) , 10.1002/J.1538-7305.1961.TB01626.X
G. D. Boyd, H. Kogelnik, Generalized Confocal Resonator Theory Bell System Technical Journal. ,vol. 41, pp. 1347- 1369 ,(1962) , 10.1002/J.1538-7305.1962.TB03281.X
G. Goubau, F. Schwering, On the guided propagation of electromagnetic wave beams IRE Transactions on Antennas and Propagation. ,vol. 9, pp. 248- 256 ,(1961) , 10.1109/TAP.1961.1144999
J. Beyer, E. Scheibe, Higher modes in guided electromagnetic-wave beams IEEE Transactions on Antennas and Propagation. ,vol. 10, pp. 349- 350 ,(1962) , 10.1109/TAP.1962.1137870
R. B. Harvey, P. M. Morse, H. Feschbach, Methods of Theoretical Physics The Mathematical Gazette. ,vol. 39, pp. 80- ,(1955) , 10.2307/3611130