Delamination fracture toughness of UHMWPE fibers/polyurethane laminates interleaved with carbon nanotube-reinforced polyurethane films

作者: T. Lyashenko-Miller , G. Marom

DOI: 10.1002/PAT.3848

关键词: Materials scienceSurface energyComposite laminatesCarbon nanotubePolyurethaneNanocompositeComposite materialPolyethyleneFracture toughness

摘要: The main cause for failure of composite laminates is delamination under shear or transverse loading. A common approach to prevent such introduce a discrete interleaf at the midplane laminate in order increase its fracture toughness and, consequently, resistance delamination. Accordingly, study Mode I ultra-high molecular weight polyethylene fibers/polyurethane matrix interleaved with thin polyurethane films reinforced either untreated functionalized carbon nanotubes presented here. results show that—depending on surface treatment nanotubes—the introduction an generates significant improvement initiation and propagation compared non-interleaved un-reinforced films. correlate “trouser-leg” energy Copyright © 2016 John Wiley & Sons, Ltd.

参考文章(38)
Jialv Zhou, Xiaobin Deng, Yuan Yan, Xi Chen, Yilun Liu, Superelasticity and reversible energy absorption of polyurethane cellular structures with sand filler Composite Structures. ,vol. 131, pp. 966- 974 ,(2015) , 10.1016/J.COMPSTRUCT.2015.06.059
Chen Wang, Xianbai Ji, Anish Roy, Vadim V. Silberschmidt, Zhong Chen, Shear strength and fracture toughness of carbon fibre/epoxy interface: effect of surface treatment Materials & Design. ,vol. 85, pp. 800- 807 ,(2015) , 10.1016/J.MATDES.2015.07.104
Seong-Ock Lee, Kyong Yop Rhee, Soo-Jin Park, Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites Journal of Industrial and Engineering Chemistry. ,vol. 32, pp. 153- 156 ,(2015) , 10.1016/J.JIEC.2015.08.009
James J. Stahl, Alexander E. Bogdanovich, Philip D. Bradford, Carbon nanotube shear-pressed sheet interleaves for Mode I interlaminar fracture toughness enhancement Composites Part A-applied Science and Manufacturing. ,vol. 80, pp. 127- 137 ,(2016) , 10.1016/J.COMPOSITESA.2015.10.014
Jingjing Jia, Xusheng Du, Chao Chen, Xinying Sun, Yiu-Wing Mai, Jang-Kyo Kim, 3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites Carbon. ,vol. 95, pp. 978- 986 ,(2015) , 10.1016/J.CARBON.2015.09.001
A.W. Christiansen, J. Lilley, J.B. Shortall, A three point bend test for fibre-reinforced composites Fibre Science and Technology. ,vol. 7, pp. 1- 13 ,(1974) , 10.1016/0015-0568(74)90002-5
A. Tugrul Seyhan, Metin Tanoglu, Karl Schulte, Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites Engineering Fracture Mechanics. ,vol. 75, pp. 5151- 5162 ,(2008) , 10.1016/J.ENGFRACMECH.2008.08.003
T. Stern, G. Marom, E. Wachtel, Origin, morphology and crystallography of transcrystallinity in polyethylene-based single-polymer composites Composites Part A-applied Science and Manufacturing. ,vol. 28, pp. 437- 444 ,(1997) , 10.1016/S1359-835X(96)00142-X
H Hu, P Bhowmik, B Zhao, M.A Hamon, M.E Itkis, R.C Haddon, Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration Chemical Physics Letters. ,vol. 345, pp. 25- 28 ,(2001) , 10.1016/S0009-2614(01)00851-X
Peng Liu, Modifications of carbon nanotubes with polymers European Polymer Journal. ,vol. 41, pp. 2693- 2703 ,(2005) , 10.1016/J.EURPOLYMJ.2005.05.017