Real‐Time In Situ Powder X‐ray Diffraction Monitoring of Mechanochemical Synthesis of Pharmaceutical Cocrystals

作者: Ivan Halasz , Andreas Puškarić , Simon A. J. Kimber , Patrick J. Beldon , Ana M. Belenguer

DOI: 10.1002/ANIE.201305928

关键词: GrindingNanotechnologyMechanochemistryX-ray crystallographyCocrystalMaterials scienceReaction mechanismParticleIn situ

摘要: Looking in: The penetrating power of high-energy X-rays provides a means to monitor in situ and in real time the course ball-milling reactions organic pharmaceutical solids by detecting crystalline phases assessing evolution their particle sizes. Upon switching from neat grinding liquid-assisted grinding, cocrystal formation is enabled or tremendously accelerated, while reaction mechanism alters its course.

参考文章(42)
Xiaohong Liu, Guifeng Liu, Hongwei Zhao, Zengyang Zhang, Yongbo Wei, Min Liu, Wen Wen, Xingtai Zhou, The quantitative monitoring of mechanochemical reaction between solid l-tartaric acid and sodium carbonate monohydrate by terahertz spectroscopy Journal of Physics and Chemistry of Solids. ,vol. 72, pp. 1245- 1250 ,(2011) , 10.1016/J.JPCS.2011.07.011
Laszlo Takacs, Self-sustaining reactions induced by ball milling Progress in Materials Science. ,vol. 47, pp. 355- 414 ,(2002) , 10.1016/S0079-6425(01)00002-0
Graham A. Bowmaker, Narongsak Chaichit, Chaveng Pakawatchai, Brian W. Skelton, Allan H. White, Solvent-assisted mechanochemical synthesis of metal complexes. Dalton Transactions. pp. 2926- 2928 ,(2008) , 10.1039/B804229M
Vjekoslav Štrukil, László Fábián, David G Reid, Melinda J Duer, Graham J Jackson, Mirjana Eckert-Maksić, Tomislav Friščić, None, Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal–organic compounds Chemical Communications. ,vol. 46, pp. 9191- 9193 ,(2010) , 10.1039/C0CC03822A
Scott G. Fleischman, Srinivasan S. Kuduva, Jennifer A. McMahon, Brian Moulton, Rosa D. Bailey Walsh, Naír Rodríguez-Hornedo, Michael J. Zaworotko, Crystal Engineering of the Composition of Pharmaceutical Phases: Multiple-Component Crystalline Solids Involving Carbamazepine Crystal Growth & Design. ,vol. 3, pp. 909- 919 ,(2003) , 10.1021/CG034035X
David R. Weyna, Tanise Shattock, Peddy Vishweshwar, Michael J. Zaworotko, Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution Crystal Growth & Design. ,vol. 9, pp. 1106- 1123 ,(2009) , 10.1021/CG800936D
F.Kh. Urakaev, V.V. Boldyrev, Mechanism and kinetics of mechanochemical processes in comminuting devices Powder Technology. ,vol. 107, pp. 93- 107 ,(2000) , 10.1016/S0032-5910(99)00175-8
Vjekoslav Štrukil, Marina D. Igrc, Mirjana Eckert-Maksić, Tomislav Friščić, Click Mechanochemistry: Quantitative Synthesis of “Ready to Use” Chiral Organocatalysts by Efficient Two‐Fold Thiourea Coupling to Vicinal Diamines Chemistry: A European Journal. ,vol. 18, pp. 8464- 8473 ,(2012) , 10.1002/CHEM.201200632
László Fábián, Noel Hamill, Kevin S. Eccles, Humphrey A. Moynihan, Anita R. Maguire, Linda McCausland, Simon E. Lawrence, Cocrystals of fenamic acids with nicotinamide Crystal Growth & Design. ,vol. 11, pp. 3522- 3528 ,(2011) , 10.1021/CG200429J
Kenneth D. M. Harris, Mechanochemical synthesis: how grinding evolves. Nature Chemistry. ,vol. 5, pp. 12- 14 ,(2013) , 10.1038/NCHEM.1539