Chemotherapy Response Evaluation with 18F-FDG PET in Patients with Non-Small Cell Lung Cancer

作者: L.-F. de Geus-Oei , H. F.M. van der Heijden , E. P. Visser , R. Hermsen , B. A. van Hoorn

DOI: 10.2967/JNUMED.107.043414

关键词: Patlak plotNuclear medicineSurvival analysisProspective cohort studyCancerOncologyLung cancerStandardized uptake valueResponse Evaluation Criteria in Solid TumorsSurvival rateInternal medicineMedicine

摘要: The aim of this prospective study was to evaluate the value (18)F-FDG PET for assessment chemotherapy response in patients with non-small cell lung cancer. Furthermore, part objective compare 2 methods quantify changes glucose metabolism. METHODS: In 51 patients, dynamic performed before and at 5-8 wk into treatment. Simplified measure metabolism (standardized uptake [SUV]) quantitative measures (metabolic rate [MR(Glu)]), derived from Patlak analysis, were evaluated. overall survival progression-free respect MR(Glu) SUV calculated using Kaplan-Meier estimates. Fractional tumor use stratified by median also predefined EORTC (European Organization Research Treatment Cancer) metabolic criteria, criteria applying cutoff levels similar those RECIST (Response Evaluation Criteria Solid Tumors) RESULTS: When stratifying DeltaMR(Glu) DeltaSUV, difference (P = 0.017 DeltaMR(Glu), P 0.018 DeltaSUV) 0.002 0.0009 highly significant. response, as used size measurement (RECIST) showed significant differences DeltaSUV between categories 0.0003) well 0.027). CONCLUSION: degree chemotherapy-induced determined is predictive patient outcome, groups widely differing probabilities. therapy monitoring seems clinically feasible, because simplified (SUV) are sufficiently reliable can replace more complex, (MR(Glu)) population.

参考文章(29)
Wolfgang A. Weber, Volker Petersen, Burkhard Schmidt, Leishia Tyndale-Hines, Thomas Link, Christian Peschel, Markus Schwaiger, Positron Emission Tomography in Non–Small-Cell Lung Cancer: Prediction of Response to Chemotherapy by Quantitative Assessment of Glucose Use Journal of Clinical Oncology. ,vol. 21, pp. 2651- 2657 ,(2003) , 10.1200/JCO.2003.12.004
Stephanie Green, Geoffrey R. Weiss, Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Investigational New Drugs. ,vol. 10, pp. 239- 253 ,(1992) , 10.1007/BF00944177
Marinke Westerterp, Jan Pruim, Wim Oyen, Otto Hoekstra, Anne Paans, Eric Visser, Jan Van Lanschot, Gerrit Sloof, Ronald Boellaard, None, Quantification of FDG PET studies using standardised uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters European Journal of Nuclear Medicine and Molecular Imaging. ,vol. 34, pp. 392- 404 ,(2007) , 10.1007/S00259-006-0224-1
Yuichi Ichiya, Yasuo Kuwabara, Masayuki Sasaki, Tsuyoshi Yoshida, Junichi Omagari, Yuko Akashi, Akira Kawashima, Toshimitsu Fukumura, Kouji Masuda, A clinical evaluation of FDG-PET to assess the response in radiation therapy for bronchogenic carcinoma Annals of Nuclear Medicine. ,vol. 10, pp. 193- 200 ,(1996) , 10.1007/BF03165392
Yuka Yamamoto, Yoshihiro Nishiyama, Toshihide Monden, Yasuhiro Sasakawa, Motoomi Ohkawa, Masashi Gotoh, Kotaro Kameyama, Reiji Haba, Correlation of FDG-PET findings with histopathology in the assessment of response to induction chemoradiotherapy in non-small cell lung cancer. European Journal of Nuclear Medicine and Molecular Imaging. ,vol. 33, pp. 140- 147 ,(2006) , 10.1007/S00259-005-1878-9
Michael P. Mac Manus, Rodney J. Hicks, Jane P. Matthews, Allan McKenzie, Danny Rischin, Eeva K. Salminen, David L. Ball, Positron Emission Tomography Is Superior to Computed Tomography Scanning for Response-Assessment After Radical Radiotherapy or Chemoradiotherapy in Patients With Non–Small-Cell Lung Cancer Journal of Clinical Oncology. ,vol. 21, pp. 1285- 1292 ,(2003) , 10.1200/JCO.2003.07.054
Antoinet van Der Wel, Sebastiaan Nijsten, Monique Hochstenbag, Rob Lamers, Liesbeth Boersma, Rinus Wanders, Ludy Lutgens, Michael Zimny, Søren M. Bentzen, Brad Wouters, Philippe Lambin, Dirk De Ruysscher, Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. International Journal of Radiation Oncology Biology Physics. ,vol. 61, pp. 649- 655 ,(2005) , 10.1016/J.IJROBP.2004.06.205
Dirk De Ruysscher, Stofferinus Wanders, Erik van Haren, Monique Hochstenbag, Wiel Geeraedts, Irwan Utama, Jean Simons, Jo Dohmen, Ali Rhami, Ulrich Buell, Paul Thimister, Gabriel Snoep, Liesbeth Boersma, Tom Verschueren, Angela van Baardwijk, Andre Minken, Søren M. Bentzen, Philippe Lambin, Selective mediastinal node irradiation based on FDG-PET scan data in patients with non–small-cell lung cancer: A prospective clinical study International Journal of Radiation Oncology*Biology*Physics. ,vol. 62, pp. 988- 994 ,(2005) , 10.1016/J.IJROBP.2004.12.019
Michael P. Mac Manus, Rodney J. Hicks, Jane P. Matthews, Andrew Wirth, Danny Rischin, David L. Ball, Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer. ,vol. 49, pp. 95- 108 ,(2005) , 10.1016/J.LUNGCAN.2004.11.024
Malik E. Juweid, Bruce D. Cheson, Positron-Emission Tomography and Assessment of Cancer Therapy New England Journal of Medicine. ,vol. 354, pp. 496- 507 ,(2006) , 10.1056/NEJMRA050276