Modeling scaled processes and 1/fβnoise using nonlinear stochastic differential equations

作者: B Kaulakys , M Alaburda

DOI: 10.1088/1742-5468/2009/02/P02051

关键词: Statistical physicsSignal intensityMathematicsEvent (probability theory)Stochastic processMathematical optimizationNonlinear stochastic differential equationsNoise (electronics)Nonlinear differential equationsAnalytical expressions

摘要: We present and analyze stochastic nonlinear differential equations generating signals with the power-law distributions of signal intensity, 1/fβ noise, autocorrelations second-order structural (height–height correlation) functions. Analytical expressions for such characteristics are derived a comparison numerical calculations is presented. The reveal links between proposed model models where consist bursts characterized by burst size, duration interburst time, as in case avalanches self-organized critical extreme event return times long-term memory processes. approach presented may be useful modeling long-range scaled processes exhibiting 1/f noise distributions.

参考文章(140)
Peter H. Handel, Nature of1fPhase Noise Physical Review Letters. ,vol. 34, pp. 1495- 1498 ,(1975) , 10.1103/PHYSREVLETT.34.1495
S. Watanabe, Multi-Lorentzian model and 1/f noise spectra Journal of the Korean Physical Society. ,vol. 46, pp. 646- 650 ,(2005)
Yevgeny V. Mamontov, Magnus Willander, Long Asymptotic Correlation Time for Non-Linear Autonomous Itô's Stochastic Differential Equation Nonlinear Dynamics. ,vol. 12, pp. 399- 411 ,(1997) , 10.1023/A:1008206003072
James Theiler, Some comments on the correlation dimension of 1/fα noise Physics Letters A. ,vol. 155, pp. 480- 493 ,(1991) , 10.1016/0375-9601(91)90651-N
Dietrich E Wolf, Michael Schreckenberg, Achim Bachem, None, Traffic and Granular Flow Traffic and Granular Flow. ,(1996) , 10.1142/9789814531276
MEJ Newman, Power laws, Pareto distributions and Zipf's law Contemporary Physics. ,vol. 46, pp. 323- 351 ,(2005) , 10.1080/00107510500052444
B. KAULAKYS, M. ALABURDA, V. GONTIS, T. MESKAUSKAS, Multifractality of the Multiplicative Autoregressive Point Processes Fractals. pp. 277- 286 ,(2006) , 10.1142/9789812774217_0025
B. Kaulakys, T. Meškauskas, On the generation and origin of I/f noise Nonlinear Analysis-Modelling and Control. ,vol. 4, pp. 87- 96 ,(1999) , 10.15388/NA.1999.4.0.15250