Power-law statistics from nonlinear stochastic differential equations driven by Lévy stable noise

作者: Rytis Kazakevičius , Julius Ruseckas

DOI: 10.1016/J.CHAOS.2015.08.024

关键词:

摘要: Anomalous diffusion occurring in complex dynamical systems can often be described by Langevin equations driven Levy stable noise. Nonlinear stochastic differential yielding power-law steady state distribution and generating signals with 1/f power spectral density generalized replacing the Gaussian noise a more general These nonlinear generate exhibiting anomalous diffusion: either sub-diffusion or super-diffusion. In special case when stability index is α=2, we retain We investigate numerically frequency range where spectrum has form demonstrate that this depends on exponent as well of α. expect generalization may useful for describing fluctuations diffusion.

参考文章(83)
Aaron Clauset, Cosma Rohilla Shalizi, M. E. J. Newman, Power-Law Distributions in Empirical Data Siam Review. ,vol. 51, pp. 661- 703 ,(2009) , 10.1137/070710111
Y. Marandet, H. Capes, L. Godbert-Mouret, R. Guirlet, M. Koubiti, R. Stamm, A spectroscopic investigation of turbulence in magnetized plasmas Communications in Nonlinear Science and Numerical Simulation. ,vol. 8, pp. 469- 475 ,(2003) , 10.1016/S1007-5704(03)00041-8
Peter D. Ditlevsen, Observation of α-stable noise induced millennial climate changes from an ice-core record Geophysical Research Letters. ,vol. 26, pp. 1441- 1444 ,(1999) , 10.1029/1999GL900252
Hans C. Fogedby, Lévy flights in quenched random force fields Physical Review E. ,vol. 58, pp. 1690- 1712 ,(1998) , 10.1103/PHYSREVE.58.1690
Albert-László Barabási, Réka Albert, Emergence of Scaling in Random Networks Science. ,vol. 286, pp. 509- 512 ,(1999) , 10.1126/SCIENCE.286.5439.509
Lawrence Ward, Priscilla Greenwood, 1/f noise Scholarpedia. ,vol. 2, pp. 1537- ,(2007) , 10.4249/SCHOLARPEDIA.1537
T. H. Solomon, Eric R. Weeks, Harry L. Swinney, Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Physical Review Letters. ,vol. 71, pp. 3975- 3978 ,(1993) , 10.1103/PHYSREVLETT.71.3975
B. Kaulakys, AUTOREGRESSIVE MODEL OF 1 /F NOISE Physics Letters A. ,vol. 257, pp. 37- 42 ,(1999) , 10.1016/S0375-9601(99)00284-4
Hans C. Fogedby, Lévy flights in random environments. Physical Review Letters. ,vol. 73, pp. 2517- 2520 ,(1994) , 10.1103/PHYSREVLETT.73.2517
B Kaulakys, M Alaburda, Modeling scaled processes and 1/fβnoise using nonlinear stochastic differential equations Journal of Statistical Mechanics: Theory and Experiment. ,vol. 2009, pp. 02051- ,(2009) , 10.1088/1742-5468/2009/02/P02051