Topological color codes and two-body quantum lattice Hamiltonians

作者: M. A. Martin-Delgado , M. Kargarian , Hector Bombin

DOI: 10.1088/1367-2630/12/2/025018

关键词: Coupling constantHamiltonian (quantum mechanics)PhysicsDegenerate energy levelsHamiltonian lattice gauge theoryGround stateAdiabatic quantum computationTopologyTopological degeneracyCluster state

摘要: Topological color codes are among the stabilizer with remarkable properties from quantum information perspective. In this paper, we construct a lattice, so-called ruby coordination number 4 governed by two-body Hamiltonian. particular regime of coupling constants, in strong limit, degenerate perturbation theory implies that low-energy spectrum model can be described many-body effective Hamiltonian, which encodes code as its ground state subspace. Ground subspace corresponds to vortex-free sector. The gauge symmetry Z2×Z2 could already realized identifying three distinct plaquette operators on lattice. All commute each other and Hamiltonian being integrals motion. Plaquettes extended closed strings or string-net structures. Non-contractible winding space but not always other. This gives rise exact topological degeneracy model. A connection 2-colexes established via coloring strings. We discuss it at non-perturbative level. structure provides fruitful interpretation terms mapping onto bosons coupled spins. show high-energy excitations have fermionic statistics. They form families one color. Furthermore, they belong family charges. emergence invisible charges is related emerging fermions nontrivial fields. for 2-colexes, see background fluxes state. Also, use Jordan–Wigner transformation order test integrability introducing Majorana fermions. four-valent lattice prevents fermionized reduced quadratic owing interacting also propose another construction based between cluster states. corresponding defined bipartite spectrum, subsequent selective measurements give latter approach along

参考文章(97)
Zachary W. E. Evans, Ashley M. Stephens, Optimal decoding in fault-tolerant concatenated quantum error correction ,(2009)
J. M. Leinaas, J. Myrheim, On the theory of identical particles Il Nuovo Cimento B. ,vol. 37, pp. 1- 23 ,(1977) , 10.1007/BF02727953
Xiao-Gang Wen, Topological orders and edge excitations in fractional quantum hall states Advances in Physics. ,vol. 44, pp. 405- 473 ,(1995) , 10.1080/00018739500101566
Thomas M. Gurrieri, Andrew J. Landahl, James E. Levy, Anand Ganti, Robert D. Carr, Malcolm S. Carroll, Benjamin R. Hamlet, Cynthia A. Phillips, The impact of classical electronics constraints on a solid-state logical qubit memory arXiv: Quantum Physics. ,(2009)
Mehdi Kargarian, Finite temperature topological order in 2D topological color codes arXiv: Quantum Physics. ,(2009)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
H. Bombin, M. A. Martin-Delgado, Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement Physical Review B. ,vol. 78, pp. 115421- ,(2008) , 10.1103/PHYSREVB.78.115421
Robert Raussendorf, Hans J. Briegel, Computational model underlying the one-way quantum computer Quantum Information & Computation. ,vol. 2, pp. 443- 486 ,(2002) , 10.5555/2011492.2011495
J. Eisert, M. Cramer, M. B. Plenio, Colloquium: Area laws for the entanglement entropy Reviews of Modern Physics. ,vol. 82, pp. 277- 306 ,(2010) , 10.1103/REVMODPHYS.82.277
Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De), Ujjwal Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond Advances in Physics. ,vol. 56, pp. 243- 379 ,(2007) , 10.1080/00018730701223200