The impact of classical electronics constraints on a solid-state logical qubit memory

作者: Thomas M. Gurrieri , Andrew J. Landahl , James E. Levy , Anand Ganti , Robert D. Carr

DOI:

关键词:

摘要: AbstractWe describe a fault-tolerant memory for an error-corrected logical qubit based on silicondouble quantum dot physical qubits. Our design accounts constraints imposed by supportingclassical electronics. A signi cant consequence of the is to add error-prone idle stepsfor Even using schedule with provably minimum time, our noisemodel and choice error-correction code, we nd that these additional idles negate any bene tsof error correction. Using operations, can greatly suppress idle-inducederrors, making correction cial, provided operations achieve rateless than 2 10 5 . We discuss other consequences such as error-correctioncode operation speed. While analysis speci c this memoryarchitecture, methods develop are general enough apply architectures well.1 Introduction Quantum information processing (QIP) promises path towards resolving currently computationally-intractable problems [1]. However, bits (qubits) used storing are,unfortunately, much more susceptible errors classical bits. Realization error-correctedquantum computation, therefore, represents critical QIP engineering pursuit. key concept inthis pursuit redundant encoding in state many Thisredundancy allows one check correct them.This paper presents solid-state architecture single accountsfor both electronics native gate set|the available set transformations system provides. Quantum-computingarchitectures have been considered previously, example ion traps [2] [3,4].These analyses began study incorporating realistic implementation constraints. extendthese studies include explicit electronic constraints, where expect electronicsintegration be easier least constrained. From gained number

参考文章(21)
Akira Fujiwara, Yasuo Takahashi, Manipulation of elementary charge in a silicon charge-coupled device. Nature. ,vol. 410, pp. 560- 562 ,(2001) , 10.1038/35069023
L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, C. J. Wellard, Two-dimensional architectures for donor-based quantum computing Physical Review B. ,vol. 74, pp. 045311- ,(2006) , 10.1103/PHYSREVB.74.045311
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Daniel Gottesman, Panos Aliferis, John Preskill, Quantum accuracy threshold for concatenated distance-3 codes Quantum Information & Computation. ,vol. 6, pp. 97- 165 ,(2006) , 10.26421/QIC6.2-1
K. Khodjasteh, D. A. Lidar, Fault-tolerant quantum dynamical decoupling quantum electronics and laser science conference. ,vol. 95, pp. 180501- 180501 ,(2005) , 10.1103/PHYSREVLETT.95.180501
J. Gorman, D. G. Hasko, D. A. Williams, Charge-qubit operation of an isolated double quantum dot. Physical Review Letters. ,vol. 95, pp. 090502- 090502 ,(2005) , 10.1103/PHYSREVLETT.95.090502
A. M. Steane, Active Stabilization, Quantum Computation, and Quantum State Synthesis Physical Review Letters. ,vol. 78, pp. 2252- 2255 ,(1997) , 10.1103/PHYSREVLETT.78.2252
Sándor Imre, Péter Abronits, Dániel Darabos, Quantum designer and network simulator Proceedings of the first conference on computing frontiers on Computing frontiers - CF'04. pp. 89- 95 ,(2004) , 10.1145/977091.977106
Xuedong Hu, S. Das Sarma, Charge-fluctuation-induced dephasing of exchange-coupled spin qubits Physical Review Letters. ,vol. 96, pp. 100501- 100501 ,(2006) , 10.1103/PHYSREVLETT.96.100501