Density, Viscosity and Velocity (Ascent Rate) of Alkaline Magmas

作者: K Gaurav J. Kokandakar , Sachin S. Ghodke , Rathna , K. , Laxman

DOI: 10.1007/S12594-018-0827-8

关键词: PorphyriticPhenocrystMagmaPetrologyGeologyPerthiteAlkali basaltAmphiboleBasaltShonkinite

摘要: Three distinct alkaline magmas, represented by shonkinite, lamprophyre and alkali basalt dykes, characterize a significant magmatic expression of rift-related mantle-derived igneous activity in the Mesoproterozoic Prakasam Alkaline Province, SE India. In present study we have estimated emplacement velocities (ascent rates) for these three varied magmas compared with other silicate to explore composition control on ascent rates. The dykes variable widths lengths none wider than 1 m. shonkinites are fine- medium-grained rocks clinopyroxene, phologopite, amphibole, K-feldspar perthite nepheline as essential minerals. They exhibit equigranular hypidiomorphic foliated textures. Lamprophyres basalts characteristically show porphyritic Olivine, amphibole biotite phenocrysts lamprophyres whereas olivine, clinopyroxene plagioclase form phenocrystic mineralogy basalts. calculated densities [2.54–2.71 g/cc shonkinite; 2.61–2.78 lamprophyre; 2.66–2.74 basalt] viscosities [3.11–3.39 Pa s 3.01–3.28 2.72–3.09 utilized compute magmas. Since crystal-laden, also effective infer crystal velocities. Twenty percent crystals magma increase viscosity 2.7 times consequently decrease rate crystal-free computed rates range from 0.11–2.13 m/sec, 0.23–2.77 m/sec 1.16–2.89 respectively. Ascent width density difference, proportion crystals. If constant m is assumed magma-filled dyke propagation model, then sequence decreasing order (4.68–15.31 m/sec) > ultramafic-mafic (3.81–4.30 intermediate-felsic (1.76–2.56 m/sec). We propose that SiO2 content terrestrial can be modeled semi-quantitative “geospeedometer”

参考文章(99)
Chloé Michaut, David Baratoux, Clément Thorey, None, Magmatic intrusions and deglaciation at mid-latitude in the northern plains of Mars Icarus. ,vol. 225, pp. 602- 613 ,(2013) , 10.1016/J.ICARUS.2013.04.015
O. Melnik, R. S. J. Sparks, Controls on conduit magma flow dynamics during lava dome building eruptions Journal of Geophysical Research. ,vol. 110, pp. 1- 21 ,(2005) , 10.1029/2004JB003183
Anne H. Peslier, Alan B. Woodland, John A. Wolff, Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa Geochimica et Cosmochimica Acta. ,vol. 72, pp. 2711- 2722 ,(2008) , 10.1016/J.GCA.2008.03.019
Malcolm J. Rutherford, Peter M. Hill, Magma ascent rates from amphibole breakdown: An experimental study applied to the 1980–1986 Mount St. Helens eruptions Journal of Geophysical Research. ,vol. 98, pp. 19667- 19685 ,(1993) , 10.1029/93JB01613
Jonathan J Wylie, Barry Voight, JA Whitehead, Instability of Magma Flow from Volatile-Dependent Viscosity Science. ,vol. 285, pp. 1883- 1885 ,(1999) , 10.1126/SCIENCE.285.5435.1883
E.G. Nisbet, M.J. Cheadle, N.T. Arndt, M.J. Bickle, Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites Lithos. ,vol. 30, pp. 291- 307 ,(1993) , 10.1016/0024-4937(93)90042-B
L CARICCHI, L BURLINI, P ULMER, T GERYA, M VASSALLI, P PAPALE, Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics Earth and Planetary Science Letters. ,vol. 264, pp. 402- 419 ,(2007) , 10.1016/J.EPSL.2007.09.032
D. Upadhyay, M.M. Raith, K. Mezger, K. Hammerschmidt, Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India Lithos. ,vol. 89, pp. 447- 477 ,(2006) , 10.1016/J.LITHOS.2005.12.015