Equivalent forms of a generalized Hirota's equation with linear inhomogeneities

作者: M. Lakshmanan , S. Ganesan

DOI: 10.1143/JPSJ.52.4031

关键词: Type equationFerromagnetismEigenvalues and eigenvectorsSpin chainContinuum (topology)Gauge (firearms)Quantum mechanicsPhysics

摘要: A generalized version of the Hirota's equation with linear inhomogeneities is shown to be equivalent a continuum Heisenberg ferromagnetic spin chain as well Wadati-Konno-Ichikawa-Shimizu (WKIS) type equation, both from geometrical and gauge considerations. The corresponding spectral problems are associated moving eigenvalues.

参考文章(7)
Miki Wadati, Kiyoshi Sogo, GAUGE TRANSFORMATIONS IN SOLITON THEORY Journal of the Physical Society of Japan. ,vol. 52, pp. 394- 398 ,(1983) , 10.1143/JPSJ.52.394
M. Lakshmanan, Continuum spin system as an exactly solvable dynamical system Physics Letters A. ,vol. 61, pp. 53- 54 ,(1977) , 10.1016/0375-9601(77)90262-6
J.W. Dash, Thresholds and the temperature of the Reggeon field theory Physics Letters B. ,vol. 61, pp. 53- 56 ,(1976) , 10.1016/0370-2693(76)90560-8
V. E. Zakharov, L. A. Takhtadzhyan, Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet Theoretical and Mathematical Physics. ,vol. 38, pp. 17- 23 ,(1979) , 10.1007/BF01030253
M. Lakshmanan, K. M. Tamizhmani, Motion of strings, embedding problem and soliton equations Flow Turbulence and Combustion. ,vol. 37, pp. 127- 143 ,(1981) , 10.1007/BF00382623