Deformed soliton, breather and rogue wave solutions of an inhomogeneous nonlinear Hirota equation

作者: Xiaotong Liu , Xuelin Yong , Yehui Huang , Rui Yu , Jianwei Gao

DOI: 10.1016/J.CNSNS.2015.05.016

关键词:

摘要: Abstract In this paper, an inhomogeneous nonlinear Hirota equation with linear coefficient and higher-order dispersion is investigated in detail. describing wave propagation the ocean optical fibers, it can be viewed as approximation which more accurate than Schr o ¨ dinger equation. Firstly, we modified Darboux transformation technique to show how construct solutions of owns a non-isospectral Lax pair. Furthermore, deformed soliton, breather rogue are studied via method, respectively. Finally, properties those media discussed illustrate influences variable coefficients.

参考文章(39)
Anjan Biswas, None, Optical solitons: Quasi-stationarity versus Lie transform Optical and Quantum Electronics. ,vol. 35, pp. 979- 998 ,(2003) , 10.1023/A:1025121931885
Ricardo Carretero-González, Dimitri J. Frantzeskakis, Panayotis G. Kevrekidis, Emergent nonlinear phenomena in Bose-Einstein condensates : theory and experiment Springer. ,(2008)
Anjan Biswas, Swapan Konar, Introduction to non-Kerr Law Optical Solitons ,(2006)
Pan Wang, Bo Tian, Wen-Jun Liu, Min Li, Kun Sun, Soliton Solutions for a Generalized Inhomogeneous Variable-Coefficient Hirota Equation with Symbolic Computation Studies in Applied Mathematics. ,vol. 125, pp. 213- 222 ,(2010) , 10.1111/J.1467-9590.2010.00486.X
E. Braverman, I.M. Karabash, Structured stability radii and exponential stability tests for Volterra difference systems Computers & Mathematics With Applications. ,vol. 66, pp. 2259- 2280 ,(2013) , 10.1016/J.CAMWA.2013.06.015
M. Lakshmanan, S. Ganesan, Equivalent forms of a generalized Hirota's equation with linear inhomogeneities Journal of the Physical Society of Japan. ,vol. 52, pp. 4031- 4033 ,(1983) , 10.1143/JPSJ.52.4031
Lingjun Zhou, Darboux transformation for the nonisospectral AKNS system Physics Letters A. ,vol. 345, pp. 314- 322 ,(2005) , 10.1016/J.PHYSLETA.2005.07.046
K. Porsezian, M. Daniel, R. Bharathikannan, Generalized χ-dependent Hirota equation: singularity structure, Bäcklund transformation and soliton solutions Physics Letters A. ,vol. 156, pp. 206- 210 ,(1991) , 10.1016/0375-9601(91)90140-4
Anjan Biswas, Anwar Ja'afar Muhammad Jawad, Wayne N. Manrakhan, Amarendra K. Sarma, Kaisar R. Khan, Optical solitons and complexitons of the Schrödinger–Hirota equation Optics & Laser Technology. ,vol. 44, pp. 2265- 2269 ,(2012) , 10.1016/J.OPTLASTEC.2012.02.028