Soliton Solutions for a Generalized Inhomogeneous Variable-Coefficient Hirota Equation with Symbolic Computation

作者: Pan Wang , Bo Tian , Wen-Jun Liu , Min Li , Kun Sun

DOI: 10.1111/J.1467-9590.2010.00486.X

关键词:

摘要: Under investigation in this paper is a generalized inhomogeneous variable- coefficient Hirota equation. Through the bilinear method and symbolic computation, form analytic one-, two- N-soliton solutions for such an equation are obtained, respectively. Properties of those solitons media discussed analytically. We get soliton with property that larger amplitude is, narrower slower pulse is. Dynamics can be regarded as repulsion by external potential barrier. During interaction two solitons, we observe value β distance

参考文章(14)
G Balakrishnan, K Srinivasan, Dispersion of the Kerr constants of doped KCl crystals Journal of Physics C: Solid State Physics. ,vol. 15, pp. 2965- 2971 ,(1982) , 10.1088/0022-3719/15/13/022
Michael P. Barnett, Joseph F. Capitani, Joachim von zur Gathen, Jürgen Gerhard, Symbolic calculation in chemistry: Selected examples International Journal of Quantum Chemistry. ,vol. 100, pp. 80- 104 ,(2004) , 10.1002/QUA.20097
K. Porsezian, M. Daniel, R. Bharathikannan, Generalized χ-dependent Hirota equation: singularity structure, Bäcklund transformation and soliton solutions Physics Letters A. ,vol. 156, pp. 206- 210 ,(1991) , 10.1016/0375-9601(91)90140-4
Ryogo Hirota, Junkichi Satsuma, N-Soliton Solution of the K-dV Equation with Loss and Nonuniformity Terms Journal of the Physical Society of Japan. ,vol. 41, pp. 2141- 2142 ,(1976) , 10.1143/JPSJ.41.2141
A. Mahalingam, K. Porsezian, Propagation of dark solitons with higher-order effects in optical fibers. Physical Review E. ,vol. 64, pp. 046608- ,(2001) , 10.1103/PHYSREVE.64.046608
K. Porsezian, M. Lakshmanan, On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system Journal of Mathematical Physics. ,vol. 32, pp. 2923- 2928 ,(1991) , 10.1063/1.529086
R. Radhakrishnan, M. Lakshmanan, Exact soliton solutions to coupled nonlinear Schrödinger equations with higher-order effects Physical Review E. ,vol. 54, pp. 2949- 2955 ,(1996) , 10.1103/PHYSREVE.54.2949