Generalized χ-dependent Hirota equation: singularity structure, Bäcklund transformation and soliton solutions

作者: K. Porsezian , M. Daniel , R. Bharathikannan

DOI: 10.1016/0375-9601(91)90140-4

关键词:

摘要: Abstract We point out how the singularity structure analysis of solutions generalized χ-dependent Hirota equation systematically provides integrability aspects equation. The Lax pair, Backlund transformation and soliton are constructed from analysis.

参考文章(16)
M. Lakshmanan, S. Ganesan, Equivalent forms of a generalized Hirota's equation with linear inhomogeneities Journal of the Physical Society of Japan. ,vol. 52, pp. 4031- 4033 ,(1983) , 10.1143/JPSJ.52.4031
C.J. Thompson, K.A. Ross, B.J.P. Thompson, M. Lakshmanan, Chaotic planar states of the discrete dynamical anisotropic Heisenberg spin chain Physica A-statistical Mechanics and Its Applications. ,vol. 133, pp. 330- 336 ,(1985) , 10.1016/0378-4371(85)90072-X
Abbas A. Rangwala, Jyoti A. Rao, Complete soliton solutions of the ZS/AKNS equations of the inverse scattering method Physics Letters A. ,vol. 112, pp. 188- 192 ,(1985) , 10.1016/0375-9601(85)90499-2
K. Konno, M. Wadati, Simple Derivation of Backlund Transformation from Riccati Form of Inverse Method Progress of Theoretical Physics. ,vol. 53, pp. 1652- 1656 ,(1975) , 10.1143/PTP.53.1652
W. Oevel, W.-H. Steeb, Painleve analysis for a time-dependent Kadomtsev-Petviashvili equation Physics Letters A. ,vol. 103, pp. 239- 242 ,(1984) , 10.1016/0375-9601(84)90114-2
R Sahadevan, K M Tamizhmani, M Lakshmanan, Painlevé analysis and integrability of coupled non-linear Schrödinger equations Journal of Physics A. ,vol. 19, pp. 1783- 1791 ,(1986) , 10.1088/0305-4470/19/10/019
Hsing-Hen Chen, General Derivation of Bäcklund Transformations from Inverse Scattering Problems Physical Review Letters. ,vol. 33, pp. 925- 928 ,(1974) , 10.1103/PHYSREVLETT.33.925
N. Nirmala, M. J. Vedan, B. V. Baby, Auto‐Bäcklund transformation, Lax pairs, and Painlevé property of a variable coefficient Korteweg–de Vries equation. I Journal of Mathematical Physics. ,vol. 27, pp. 2640- 2643 ,(1986) , 10.1063/1.527282