Oncogenic potential of a dominant negative mutant of interferon regulatory factor 3

作者: Tae Young Kim , Kyoung-Hu Lee , Seungwoo Chang , Cheolho Chung , Han-Woong Lee

DOI: 10.1074/JBC.M205792200

关键词: Cell growthInterferon regulatory factors3T3 cellsDNA synthesisCarcinogenesisGeneticsBiologyCell biologyMutantIRF3Mutation

摘要: Interferon regulatory factor 3 (IRF3) is activated in response to various environmental stresses including viral infection and DNA-damaging agents. However, the biological function of IRF3 cell growth not well understood. We demonstrated that markedly inhibited colony formation cells. blocked DNA synthesis induced apoptosis. Based on this negative control by IRF3, we examined whether functional loss may contribute oncogenic transformation. activity was specifically expression its dominant mutant. This mutant lacks a portion binding domain like IRF3a, an alternative splice form inhibition specific target genes. Mutant efficiently transformed NIH3T3 cells, as anchorage-independent soft agar tumorigenicity nude mice. These results imply tumor suppressor suggest possible role for relative levels tumorigenesis.

参考文章(35)
Gerard I. Evan, Karen H. Vousden, Proliferation, cell cycle and apoptosis in cancer Nature. ,vol. 411, pp. 342- 348 ,(2001) , 10.1038/35077213
Andrew R. Cuddihy, Suiyang Li, Nancy Wai Ning Tam, Andrew Hoi-Tao Wong, Yoichi Taya, Ninan Abraham, John C. Bell, Antonis E. Koromilas, Double-stranded-RNA-activated protein kinase PKR enhances transcriptional activation by tumor suppressor p53. Molecular and Cellular Biology. ,vol. 19, pp. 2475- 2484 ,(1999) , 10.1128/MCB.19.4.2475
Bert Vogelstein, David Lane, Arnold J. Levine, Surfing the p53 network Nature. ,vol. 408, pp. 307- 310 ,(2000) , 10.1038/35042675
P. J. Slootweg, M. G. C. T. Van Oijen, Gain-of-Function Mutations in the Tumor Suppressor Gene p53 Clinical Cancer Research. ,vol. 6, pp. 2138- 2145 ,(2000)
Lorena Navarro, Kerri Mowen, Steven Rodems, Brian Weaver, Nancy Reich, Deborah Spector, Michael David, Cytomegalovirus Activates Interferon Immediate-Early Response Gene Expression and an Interferon Regulatory Factor 3-Containing Interferon-Stimulated Response Element-Binding Complex Molecular and Cellular Biology. ,vol. 18, pp. 3796- 3802 ,(1998) , 10.1128/MCB.18.7.3796
A. Y. Karpova, M. Trost, J. M. Murray, L. C. Cantley, P. M. Howley, Interferon regulatory factor-3 is an in vivo target of DNA-PK Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 2818- 2823 ,(2002) , 10.1073/PNAS.052713899
G. P. Zambetti, D. Olson, M. Labow, A. J. Levine, A mutant p53 protein is required for maintenance of the transformed phenotype in cells transformed with p53 plus ras cDNAs. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 89, pp. 3952- 3956 ,(1992) , 10.1073/PNAS.89.9.3952
Y.- T. Juang, W. Lowther, M. Kellum, W.- C. Au, R. Lin, J. Hiscott, P. M. Pitha, Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 9837- 9842 ,(1998) , 10.1073/PNAS.95.17.9837
J. R. Jenkins, K. Rudge, G. A. Currie, Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature. ,vol. 312, pp. 651- 654 ,(1984) , 10.1038/312651A0
K Galaktionov, A. Lee, J Eckstein, G Draetta, J Meckler, M Loda, D Beach, CDC25 Phosphatases as Potential Human Oncogenes Science. ,vol. 269, pp. 1575- 1577 ,(1995) , 10.1126/SCIENCE.7667636