Covariance Estimation in Decomposable Gaussian Graphical Models

作者: A. Wiesel , Y.C. Eldar , A.O. Hero

DOI: 10.1109/TSP.2009.2037350

关键词: Applied mathematicsEstimation of covariance matricesMinimum-variance unbiased estimatorMean squared errorEstimatorCovarianceEstimation theoryStein's unbiased risk estimateStatisticsMathematicsCovariance matrix

摘要: Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these directly related to sparsity of inverse covariance (concentration) matrix allow improved estimation with lower computational complexity. We consider concentration mean-squared error (MSE) as objective, in special type model known decomposable. This includes, example, well banded structure other cases encountered practice. Our first contribution is derivation analysis minimum variance unbiased estimator (MVUE) decomposable graphical models. provide simple closed form solution MVUE compare it classical maximum likelihood (MLE) terms performance Next, we extend celebrated Stein's risk estimate (SURE) Using SURE, prove that MSE always smaller or equal biased MLE, itself dominated by approaches. addition, propose use SURE constructive mechanism deriving new estimators. Similarly all our proposed estimators have solutions but result significant reduction MSE.

参考文章(51)
Martin J. Wainwright, Alexander T. Ihler, Alan S. Willsky, Müjdat Çetin, Randolph L. Moses, Lei Chen, John W. Fisher, Distributed fusion in sensor networks: a graphical models perspective IEEE (Institute of Electrical and Electronics Engineers). ,(2006)
Alexandre d'Aspremont, Onureena Banerjee, Laurent El Ghaoui, Model Selection Through Sparse Maximum Likelihood Estimation arXiv: Artificial Intelligence. ,(2007)
Amol Deshpande, Minos N. Garofalakis, Michael I. Jordan, Efficient Stepwise Selection in Decomposable Models uncertainty in artificial intelligence. pp. 128- 135 ,(2001)
Robert Tibshirani, Trevor Hastie, Jerome Friedman, Sparse inverse covariance estimation with the lasso arXiv: Methodology. ,(2007)
Sailes K. Sengijpta, Fundamentals of Statistical Signal Processing: Estimation Theory Technometrics. ,vol. 37, pp. 465- 466 ,(1995) , 10.1080/00401706.1995.10484391
Jos F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones Optimization Methods & Software. ,vol. 11, pp. 625- 653 ,(1999) , 10.1080/10556789908805766
Ruoyong Yang, James O. Berger, Estimation of a Covariance Matrix Using the Reference Prior Annals of Statistics. ,vol. 22, pp. 1195- 1211 ,(1994) , 10.1214/AOS/1176325625
L. R. Haff, Empirical Bayes Estimation of the Multivariate Normal Covariance Matrix Annals of Statistics. ,vol. 8, pp. 586- 597 ,(1980) , 10.1214/AOS/1176345010
L.R. Haff, Minimax estimators for a multinormal precision matrix Journal of Multivariate Analysis. ,vol. 7, pp. 374- 385 ,(1977) , 10.1016/0047-259X(77)90079-3