Map of Io’s volcanic heat flow

作者: Ashley Gerard Davies , Glenn J. Veeder , Dennis L. Matson , Torrence V. Johnson

DOI: 10.1016/J.ICARUS.2015.08.003

关键词: AsthenosphereTidal heatingMeteorologyMantle convectionGeologyAdvectionVolcanoDissipationMantle (geology)GeophysicsVolcanism

摘要: Abstract We present a map of Io’s volcanic heat flow. high flow is result intense tidal heating, which generates widespread activity. The surface expression ongoing activity constrains the location and magnitude dissipation within Io. Tidal heating models place either at relatively shallow (aesthenosphere) levels, or deep in mantle. It was thought that actual could be approximated using combination these end-member models. has now been mapped sufficient detail to compare with Our maps show distribution not matched by current nor any two find low sub-jovian (0°W) anti-jovian (180°W) longitudes, odds pure aesthenospheric model. Furthermore, there are large swaths where poor correlation between number hot spots an area power emitted. have previously accounted for ≈54% observed anomalously warm poles, possibly from deep-mantle would yield “missing” energy (48 TW) if polar surfaces temperatures ∼90 K ∼95 K cover latitudes above ∼43° ∼48° respectively. This possibility implies ratio about 1:1. However, explaining regional variations requires more detailed modeling internal consequences mantle convection advection Future model predictions can compared our map.

参考文章(73)
A.G. Davies, G.J. Veeder, S.I. Hill, D.L. Matson, T.V. Johnson, Charting thermal emission variability at Amirani with the Galileo NIMS Io Thermal Emission Database (NITED) Icarus. ,vol. 241, pp. 190- 199 ,(2014) , 10.1016/J.ICARUS.2014.06.034
M. Segatz, T. Spohn, M.N. Ross, G. Schubert, Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io Icarus. ,vol. 75, pp. 187- 206 ,(1988) , 10.1016/0019-1035(88)90001-2
F Marchis, D Le Mignant, FH Chaffee, AG Davies, SH Kwok, R Prangé, I De Pater, P Amico, R Campbell, T Fusco, RW Goodrich, A Conrad, Keck AO survey of Io global volcanic activity between 2 and 5 μm Icarus. ,vol. 176, pp. 96- 122 ,(2005) , 10.1016/J.ICARUS.2004.12.014
K. K. Khurana, X. Jia, M. G. Kivelson, F. Nimmo, G. Schubert, C. T. Russell, Evidence of a Global Magma Ocean in Io’s Interior Science. ,vol. 332, pp. 1186- 1189 ,(2011) , 10.1126/SCIENCE.1201425
Alfred McEwen, Elizabeth Turtle, Kenneth Hibbard, Edward Reynolds, Elena Adams, Io Volcano Observer (IVO): Budget travel to the outer Solar System Acta Astronautica. ,vol. 93, pp. 539- 544 ,(2014) , 10.1016/J.ACTAASTRO.2012.05.028
M.N. Ross, G. Schubert, T. Spohn, R.W. Gaskell, Internal structure of Io and the global distribution of its topography Icarus. ,vol. 85, pp. 309- 325 ,(1990) , 10.1016/0019-1035(90)90119-T
Ashley Gerard Davies, Laszlo P. Keszthelyi, David A. Williams, Cynthia B. Phillips, Alfred S. McEwen, Rosaly M. C. Lopes, William D. Smythe, Lucas W. Kamp, Laurence A. Soderblom, Robert W. Carlson, Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io Journal of Geophysical Research. ,vol. 106, pp. 33079- 33103 ,(2001) , 10.1029/2000JE001357
E. E. Russell, F. G. Brown, R. A. Chandos, W. C. Fincher, L. F. Kubel, A. A. Lacis, L. D. Travis, Galileo Photopolarimeter/Radiometer Experiment Space Science Reviews. ,vol. 60, pp. 531- 563 ,(1992) , 10.1007/978-94-011-2512-3_20
John D. Anderson, Robert A. Jacobson, Eunice L. Lau, William B. Moore, Gerald Schubert, Io's gravity field and interior structure Journal of Geophysical Research. ,vol. 106, pp. 32963- 32969 ,(2001) , 10.1029/2000JE001367
Paul H. Warren, Kaare L. Rasmussen, Megaregolith insulation, internal temperatures, and bulk uranium content of the moon Journal of Geophysical Research. ,vol. 92, pp. 3453- 3465 ,(1987) , 10.1029/JB092IB05P03453