A method for fully fuzzy linear system of equations

作者: T. Allahviranloo , H. Rouhparvar

DOI:

关键词: Mathematical analysisDefuzzificationSystem of linear equationsMathematicsFuzzy classificationFuzzy set operationsFuzzy control systemFuzzy numberFuzzy associative matrixFuzzy logicApplied mathematics

摘要:

参考文章(17)
S. Muzzioli, H. Reynaerts, Fuzzy linear systems of the form A1x+b1=A2x+b2 Fuzzy Sets and Systems. ,vol. 157, pp. 939- 951 ,(2006) , 10.1016/J.FSS.2005.09.005
Tofigh Allahviranloo, Successive over relaxation iterative method for fuzzy system of linear equations Applied Mathematics and Computation. ,vol. 162, pp. 189- 196 ,(2005) , 10.1016/J.AMC.2003.12.085
Tofigh Allahviranloo, Numerical methods for fuzzy system of linear equations Applied Mathematics and Computation. ,vol. 155, pp. 493- 502 ,(2004) , 10.1016/S0096-3003(03)00793-8
Mehdi Dehghan, Behnam Hashemi, Iterative solution of fuzzy linear systems Applied Mathematics and Computation. ,vol. 175, pp. 645- 674 ,(2006) , 10.1016/J.AMC.2005.07.033
Ming Ma, M. Friedman, A. Kandel, Duality in fuzzy linear systems Fuzzy Sets and Systems. ,vol. 109, pp. 55- 58 ,(2000) , 10.1016/S0165-0114(98)00102-X
Didier Dubois, Henri Prade, Systems of linear fuzzy constraints Fuzzy Sets and Systems. ,vol. 3, pp. 37- 48 ,(1980) , 10.1016/0165-0114(80)90004-4
Ketty Peeva, Fuzzy linear systems Fuzzy Sets and Systems. ,vol. 96, pp. 201- 209 ,(1998) , 10.1016/S0165-0114(96)00270-9
J.J. Buckley, Y. Qu, Solving systems of linear fuzzy equations Fuzzy Sets and Systems. ,vol. 43, pp. 33- 43 ,(1991) , 10.1016/0165-0114(91)90019-M
Ralph DeMarr, Nonnegative matrices with nonnegative inverses Proceedings of the American Mathematical Society. ,vol. 35, pp. 307- 308 ,(1972) , 10.1090/S0002-9939-1972-0296089-6
Tofigh Allahviranloo, The Adomian decomposition method for fuzzy system of linear equations Applied Mathematics and Computation. ,vol. 163, pp. 553- 563 ,(2005) , 10.1016/J.AMC.2004.02.020