Circular Earth Mover’s Distance for the comparison of local features

作者: Julien Rabin , Julie Delon , Yann Gousseau

DOI: 10.1109/ICPR.2008.4761372

关键词: Earth mover's distanceTime complexityComputational complexity theoryFeature extractionScale-invariant feature transformArtificial intelligenceComputer vision algorithmsHistogramRobustness (computer science)MathematicsPattern recognition

摘要: Many computer vision algorithms make use of local features, and rely on a systematic comparison these features. The chosen dissimilarity measure is crucial importance for the overall performances has to be both robust computationally efficient. Some most popular features (like SIFT [4] descriptors) are based one-dimensional circular histograms. In this contribution, we present an adaptation Earth moverpsilas distance This distance, that call CEMD, used compare SIFT-like descriptors. Experiments over large database 3 million descriptors show CEMD outperforms classical bin-to-bin distances, while having reasonable time complexity.

参考文章(9)
Cédric Villani, Topics in Optimal Transportation ,(2003)
S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 24, pp. 509- 522 ,(2002) , 10.1109/34.993558
R. Venkatesh Babu, Patrick Pérez, Patrick Bouthemy, Robust tracking with motion estimation and local Kernel-based color modeling Image and Vision Computing. ,vol. 25, pp. 1205- 1216 ,(2007) , 10.1016/J.IMAVIS.2006.07.016
J. Zhang, M. Marszałek, S. Lazebnik, C. Schmid, Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study computer vision and pattern recognition. ,vol. 73, pp. 213- 238 ,(2006) , 10.1007/S11263-006-9794-4
Matthew Brown, Richard Szeliski, Simon Winder, Multi-Image Matching Using Multi-Scale, Multi-image matching using multi-scale oriented patches computer vision and pattern recognition. ,vol. 1, pp. 510- 517 ,(2005) , 10.1109/CVPR.2005.235
Yossi Rubner, Carlo Tomasi, Leonidas J Guibas, The Earth Mover's Distance as a Metric for Image Retrieval International Journal of Computer Vision. ,vol. 40, pp. 99- 121 ,(2000) , 10.1023/A:1026543900054
David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints International Journal of Computer Vision. ,vol. 60, pp. 91- 110 ,(2004) , 10.1023/B:VISI.0000029664.99615.94
Haibin Ling, Kazunori Okada, An Efficient Earth Mover's Distance Algorithm for Robust Histogram Comparison IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 29, pp. 840- 853 ,(2007) , 10.1109/TPAMI.2007.1058
K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 27, pp. 1615- 1630 ,(2005) , 10.1109/TPAMI.2005.188