Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery

作者: Weiwei Sun , Chun Liu , Jialin Li , Yenming Mark Lai , Weiyue Li

DOI: 10.1117/1.JRS.8.083641

关键词: Euclidean distancePattern recognitionSparse matrixDetectorMathematicsHyperspectral imagingAnomaly (natural sciences)PixelThresholdingArtificial intelligenceAnomaly detection

摘要: A low-rank and sparse matrix decomposition (LRaSMD) detector has been proposed to detect anomalies in hyperspectral imagery (HSI). The detector assumes background images are low-rank while anomalies are gross errors that are sparsely distributed throughout the image scene. By solving a constrained convex optimization problem, the LRaSMD detector separates the anomalies from the background. This protects the background model from corruption. An anomaly value for each pixel is calculated using the Euclidean distance, and …

参考文章(39)
K.C. Tiwari, M.K. Arora, D. Singh, An assessment of independent component analysis for detection of military targets from hyperspectral images International Journal of Applied Earth Observation and Geoinformation. ,vol. 13, pp. 730- 740 ,(2011) , 10.1016/J.JAG.2011.03.007
José M. Bioucas-Dias, José M. P. Nascimento, Estimation of signal subspace on hyperspectral data Remote Sensing. ,vol. 5982, pp. 191- 198 ,(2005) , 10.1117/12.620061
D.W.J. Stein, S.G. Beaven, L.E. Hoff, E.M. Winter, A.P. Schaum, A.D. Stocker, Anomaly detection from hyperspectral imagery IEEE Signal Processing Magazine. ,vol. 19, pp. 58- 69 ,(2002) , 10.1109/79.974730
Kristian Bredies, Dirk A. Lorenz, Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints SIAM Journal on Scientific Computing. ,vol. 30, pp. 657- 683 ,(2008) , 10.1137/060663556
Peter Bajorski, Target Detection Under Misspecified Models in Hyperspectral Images IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 5, pp. 470- 477 ,(2012) , 10.1109/JSTARS.2012.2188095
Li Ma, Melba M. Crawford, Jinwen Tian, Anomaly Detection for Hyperspectral Images Based on Robust Locally Linear Embedding Journal of Infrared, Millimeter, and Terahertz Waves. ,vol. 31, pp. 753- 762 ,(2010) , 10.1007/S10762-010-9630-3
P. Gurram, Heesung Kwon, T. Han, Sparse Kernel-Based Hyperspectral Anomaly Detection IEEE Geoscience and Remote Sensing Letters. ,vol. 9, pp. 943- 947 ,(2012) , 10.1109/LGRS.2012.2187040
Wenzhi Liao, Rik Bellens, Aleksandra Pizurica, Wilfried Philips, Youguo Pi, Classification of Hyperspectral Data Over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 5, pp. 1177- 1190 ,(2012) , 10.1109/JSTARS.2012.2190045
A. Chudnovsky, A. Kostinski, L. Herrmann, I. Koren, G. Nutesku, E. Ben-Dor, Hyperspectral spaceborne imaging of dust-laden flows: Anatomy of Saharan dust storm from the Bodélé Depression Remote Sensing of Environment. ,vol. 115, pp. 1013- 1024 ,(2011) , 10.1016/J.RSE.2010.12.006
Mathieu Fauvel, JÓn Atli Benediktsson, Jocelyn Chanussot, Johannes R. Sveinsson, Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles IEEE Transactions on Geoscience and Remote Sensing. ,vol. 46, pp. 3804- 3814 ,(2008) , 10.1109/TGRS.2008.922034