作者: Wen-guang Cheng , Biao Li , Yong Chen
DOI: 10.1155/2014/523136
关键词: Classical orthogonal polynomials 、 Discrete orthogonal polynomials 、 Mathematical analysis 、 Difference polynomials 、 Mathematics 、 Applied mathematics 、 Wilson polynomials 、 Orthogonal polynomials 、 Jacobi polynomials 、 Bell polynomials 、 Gegenbauer polynomials
摘要: The bilinear form, Backlund transformation, and Lax pair of a (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived through Bell polynomials. integrable constraint conditions on variable coefficients can be naturally obtained in the procedure applying polynomials approach. Moreover, N-soliton solutions constructed with help Hirota method. Finally, infinite conservation laws this by decoupling binary All conserved densities fluxes illustrated explicit recursion formulae.