The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials

作者: Engui Fan

DOI: 10.1016/J.PHYSLETA.2010.11.038

关键词:

摘要: Abstract Binary Bell polynomials are extended to systematically construct bilinear formalism, Backlund transformations, Lax pairs and infinite conservation laws of the nonisospectral variable-coefficient KdV equation in a quick natural way. Moreover, local obtained through directly decoupling binary polynomials.

参考文章(29)
R. Hirota, Direct Methods in Soliton Theory Solitons. Series: Topics in Current Physics. ,vol. 17, pp. 157- 176 ,(1980) , 10.1007/978-3-642-81448-8_5
Ryogo Hirota, The Bäcklund and Inverse Scattering Transform of the K-dV Equation with Nonuniformities Journal of the Physical Society of Japan. ,vol. 46, pp. 1681- 1681 ,(1979) , 10.1143/JPSJ.46.1681
V.N. Serkin, M. Matsumoto, T.L. Belyaeva, Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers Optics Communications. ,vol. 196, pp. 159- 171 ,(2001) , 10.1016/S0030-4018(01)01365-7
Xing-Biao Hu, Chun-Xia Li, Jonathan J C Nimmo, Guo-Fu Yu, An integrable symmetric (2+1)-dimensional Lotka–Volterra equation and a family of its solutions Journal of Physics A. ,vol. 38, pp. 195- 204 ,(2005) , 10.1088/0305-4470/38/1/014
V. I. Kruglov, A. C. Peacock, J. D. Harvey, Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Physical Review E. ,vol. 71, pp. 056619- ,(2005) , 10.1103/PHYSREVE.71.056619
Sen‐yue Lou, Guang‐jiong Ni, The relations among a special type of solutions in some (D+1)‐dimensional nonlinear equations Journal of Mathematical Physics. ,vol. 30, pp. 1614- 1620 ,(1989) , 10.1063/1.528294
W. L. Chan, Li Kam‐Shun, Nonpropagating solitons of the variable coefficient and nonisospectral Korteweg–de Vries equation Journal of Mathematical Physics. ,vol. 30, pp. 2521- 2526 ,(1989) , 10.1063/1.528533