Integrability of a (2+1)-dimensional generalized breaking soliton equation

作者: Gui-qiong Xu

DOI: 10.1016/J.AML.2015.05.015

关键词: Bilinear formMathematical analysisOne-dimensional spaceRiemann hypothesisConservation lawMathematicsIntegrable systemLax pairSolitonBell polynomials

摘要: Abstract Under investigation in this letter is a (2+1)-dimensional generalized breaking soliton equation, which describes the interaction of Riemann wave propagating along y -axis with long x -axis. A singularity analysis carried out and it shown that equation admits Painleve property for one set parametric choices. Some integrable properties corresponding such as its bilinear form, N-soliton solution, Backlund transformation, Lax pair infinite conservation laws are derived binary Bell polynomials.

参考文章(29)
Jon Nimmo, Claire Gilson, 良吾 広田, 敦 永井, The direct method in soliton theory ,(2004)
R. Radha, M. Lakshmanan, Dromion like structures in the (2+1)-dimensional breaking soliton equation Physics Letters A. ,vol. 197, pp. 7- 12 ,(1995) , 10.1016/0375-9601(94)00926-G
A.C. Newell, M. Tabor, Y.B. Zeng, A unified approach to Painleve´ expansions Physica D: Nonlinear Phenomena. ,vol. 29, pp. 1- 68 ,(1987) , 10.1016/0167-2789(87)90046-7
Filiz Taşcan, Ahmet Bekir, Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sine-cosine method Applied Mathematics and Computation. ,vol. 215, pp. 3134- 3139 ,(2009) , 10.1016/J.AMC.2009.09.027
Yan Jiang, Bo Tian, Wen-Jun Liu, Kun Sun, Min Li, Soliton solutions and integrability for the generalized variable-coefficient extended Korteweg–de Vries equation in fluids Applied Mathematics Letters. ,vol. 26, pp. 402- 407 ,(2013) , 10.1016/J.AML.2012.10.013
O I Bogoyavlenskii, Breaking solitons in 2+1-dimensional integrable equations Russian Mathematical Surveys. ,vol. 45, pp. 1- 86 ,(1990) , 10.1070/RM1990V045N04ABEH002377
Wen-Xiu Ma, Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials Reports on Mathematical Physics. ,vol. 72, pp. 41- 56 ,(2013) , 10.1016/S0034-4877(14)60003-3
Wen-Xiu Ma, Bilinear equations, Bell polynomials and linear superposition principle Journal of Physics: Conference Series. ,vol. 411, pp. 012021- ,(2013) , 10.1088/1742-6596/411/1/012021