Topographic Studies of the GroEL-GroES Chaperonin Complex by Chemical Cross-linking Using Diformyl Ethynylbenzene THE POWER OF HIGH RESOLUTION ELECTRON TRANSFER DISSOCIATION FOR DETERMINATION OF BOTH PEPTIDE SEQUENCES AND THEIR ATTACHMENT SITES

作者: Michael J. Trnka , A. L. Burlingame

DOI: 10.1074/MCP.M110.003764

关键词: Combinatorial chemistryTandem mass spectrometryElectron transferElectron-transfer dissociationAnalytical chemistryChemistryGroELChaperoninDissociation (chemistry)PeptideMolecular machine

摘要: Many essential cellular processes depend upon the self-assembly of stable multiprotein entities. The architectures vast majority these protein machines remain unknown because structures are difficult to obtain by biophysical techniques alone. However, recent progress in defining architecture complexes has resulted from integrating information all available biochemical and sources generate computational models. Chemical cross-linking is a technique that holds exceptional promise toward achieving this goal providing distance constraints reflect topography complexes. Combined with structural data, can yield three-dimensional models higher order molecular machines. thus far utility been thwarted insufficient yields cross-linked products tandem mass spectrometry methods unable unambiguously establish identity covalently labeled peptides their sites modification. We report amino moieties 1,3-diformyl-5-ethynylbenzene (DEB) analysis high resolution electron transfer dissociation. This new reagent coupled energy deposition addresses obstacles generating containing two additional protonation relative conventional reagents. In addition excellent coverage sequence ions dissociation, DEB produces gas-phase precursor 4+, 5+, or 6+ charge states readily segregated unmodified dead-end modified using charge-dependent selection only quadruply state ions. Furthermore, induces dissociation DEB-peptide bonds diagnostic ion signals reveal "molecular ions" peptides. demonstrate power strategy 21-protein, ADP-bound GroEL-GroES chaperonin complex. Twenty-five unique were determined.

参考文章(53)
Abdussalam Azem, Celeste Weiss, Pierre Goloubinoff, Structural analysis of GroE chaperonin complexes using chemical cross-linking. Methods in Enzymology. ,vol. 290, pp. 253- 268 ,(1998) , 10.1016/S0076-6879(98)90024-6
Jan Seebacher, Parag Mallick, Ning Zhang, James S. Eddes, Ruedi Aebersold, Michael H. Gelb, Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. Journal of Proteome Research. ,vol. 5, pp. 2270- 2282 ,(2006) , 10.1021/PR060154Z
F. Chu, S.-o. Shan, D. T. Moustakas, F. Alber, P. F. Egea, R. M. Stroud, P. Walter, A. L. Burlingame, Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 16454- 16459 ,(2004) , 10.1073/PNAS.0407456101
Christopher J Collins, Birgit Schilling, Malin Young, Gavin Dollinger, R Kiplin Guy, None, Isotopically Labeled Crosslinking Reagents: Resolution of Mass Degeneracy in the Identification of Crosslinked Peptides Bioorganic & Medicinal Chemistry Letters. ,vol. 13, pp. 4023- 4026 ,(2003) , 10.1016/J.BMCL.2003.08.053
J. R. A. Hutchins, Y. Toyoda, B. Hegemann, I. Poser, J. K. Heriche, M. M. Sykora, M. Augsburg, O. Hudecz, B. A. Buschhorn, J. Bulkescher, C. Conrad, D. Comartin, A. Schleiffer, M. Sarov, A. Pozniakovsky, M. M. Slabicki, S. Schloissnig, I. Steinmacher, M. Leuschner, A. Ssykor, S. Lawo, L. Pelletier, H. Stark, K. Nasmyth, J. Ellenberg, R. Durbin, F. Buchholz, K. Mechtler, A. A. Hyman, J. M. Peters, Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science. ,vol. 328, pp. 593- 599 ,(2010) , 10.1126/SCIENCE.1181348
Carol V. Robinson, Andrej Sali, Wolfgang Baumeister, The molecular sociology of the cell Nature. ,vol. 450, pp. 973- 982 ,(2007) , 10.1038/NATURE06523
N. K. Tyagi, W. A. Fenton, A. L. Horwich, GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 20264- 20269 ,(2009) , 10.1073/PNAS.0911556106