Fast compressed sensing analysis for super-resolution imaging using L1-homotopy.

作者: Hazen P. Babcock , Jeffrey R. Moffitt , Yunlong Cao , Xiaowei Zhuang

DOI: 10.1364/OE.21.028583

关键词: Personal computerInterior point methodMedical imagingIterative reconstructionImage resolutionCompressed sensingReduction (complexity)OpticsTemporal resolutionHomotopyComputer science

摘要: In super-resolution imaging techniques based on single-molecule switching and localization, the time to acquire a image is limited by maximum density of fluorescent emitters that can be accurately localized per frame. order increase rate, several methods have been recently developed analyze images with higher emitter densities. One powerful approach uses compressed sensing analyzable frame several-fold compared other reported approaches. However, computational cost this approach, which interior point methods, high, analysis typical 40 µm x field-of-view movie requires thousands hours high-end desktop personal computer. Here, we demonstrate an alternative compressed-sensing algorithm, L1-Homotopy (L1H), generate reconstructions are essentially identical those derived using in one two orders magnitude less depending density. Moreover, for experimental data set varying density, L1H ~300-fold faster than methods. This drastic reduction should allow routinely applied analysis.

参考文章(25)
M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes Science. ,vol. 317, pp. 1749- 1753 ,(2007) , 10.1126/SCIENCE.1146598
Allen Y. Yang, S. Shankar Sastry, Arvind Ganesh, Yi Ma, Fast ℓ1-minimization algorithms and an application in robust face recognition: A review 2010 IEEE International Conference on Image Processing. pp. 1849- 1852 ,(2010) , 10.1109/ICIP.2010.5651522
Seamus J Holden, Stephan Uphoff, Achillefs N Kapanidis, DAOSTORM: an algorithm for high- density super-resolution microscopy Nature Methods. ,vol. 8, pp. 279- 280 ,(2011) , 10.1038/NMETH0411-279
Michael J Rust, Mark Bates, Xiaowei Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nature Methods. ,vol. 3, pp. 793- 796 ,(2006) , 10.1038/NMETH929
Sara A Jones, Sang-Hee Shim, Jiang He, Xiaowei Zhuang, Fast, three-dimensional super-resolution imaging of live cells Nature Methods. ,vol. 8, pp. 499- 505 ,(2011) , 10.1038/NMETH.1605
Lei Zhu, Wei Zhang, Daniel Elnatan, Bo Huang, Faster STORM using compressed sensing Nature Methods. ,vol. 9, pp. 721- 723 ,(2012) , 10.1038/NMETH.1978
E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science. ,vol. 313, pp. 1642- 1645 ,(2006) , 10.1126/SCIENCE.1127344
S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, X. Zhuang, Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 13978- 13983 ,(2012) , 10.1073/PNAS.1201882109
Michael R Osborne, Brett Presnell, Berwin A Turlach, A new approach to variable selection in least squares problems Ima Journal of Numerical Analysis. ,vol. 20, pp. 389- 403 ,(2000) , 10.1093/IMANUM/20.3.389
Fang Huang, Samantha L. Schwartz, Jason M. Byars, Keith A. Lidke, Simultaneous multiple-emitter fitting for single molecule super-resolution imaging Biomedical Optics Express. ,vol. 2, pp. 1377- 1393 ,(2011) , 10.1364/BOE.2.001377