Petrological characteristics and geochemical compositions of the Neotethyan Mersin ophiolite (southern Turkey): Processes of melt depletion, refertilization, chromitite formation and oceanic crust generation

作者: Samet Saka , Ibrahim Uysal , Argyrios Kapsiotis , Utku Bağcı , E. Yalçın Ersoy

DOI: 10.1016/J.JSEAES.2019.01.003

关键词: OphiolitePillow lavaGeochemistryMantle wedgeBasaltMantle (geology)GeologyMid-ocean ridgeOceanic crustSample collection

摘要: Abstract The Mersin ophiolite of the Central Taurides in southern Turkey represents an incomplete section ocean lithosphere consisting from bottom to top chromitite-bearing mantle peridotites, cumulate dunites, clinopyroxenites, and gabbros with rare pillow lavas covered by bathypelagic sedimentary rocks. tectonized peridotites are harzburgites minor dunites. They strongly melt-depleted comprising chromian spinel (Cr-spinel) medium high Cr-numbers (Cr#) [100 × Cr/(Cr + Al) = 48–82] low Al2O3 concentrations (0.05–2.2 wt%). display concave chondrite-normalized earth element (REE) patterns, which we interpret as evidence for their refertilization boninitic melts a wedge. Geochemical suggests that parental magmas high-Cr podiform chromitites (Cr#Sp = 71–83) were composition. host platinum-group mineral (PGM) assemblage laurite [Ru# = 64.0–90.7] Os-Ir alloys, indicating crystallization within range fS2 conditions (logfS2 ∼ −2 −1.3) Tmax ∼1200 °C. Mineral compositions geochemical data basalts show tholeiitic alkali compositions. tholeiites mildly light REE depleted patterns Th/Yb La/Nb ratios indicate presence sediment component, implying subduction-related origin. Petrogenetic modeling indicates resulted 20% melting spinel-bearing asthenospheric mantle. initial eNd values 7.2 4.9 two tholeiite samples asthenosphere more enriched sources probably due input older sediment. A comparison other complexes subduction-overprinted seen immature island arcs. trace similar OIB origin unrelated assemblage. composition can be modeled mixing low-degree (1–2%) garnet-bearing lherzolite (GLS) melt fractions (SLS) at variable proportions (GLS/SLS = 7/10–1/10). We propose following tectono-magmatic model petrogenetic evolution ophiolite: i) oceanic ridge spreading generated MORB type (not observed our sample collection), (ii) deep beneath crust OIB-like Neo-Tethyan basin, (iii) subduction initiation formation infant forearc basin formed arc boninites.

参考文章(109)
Vincent J. M. Salters, Andreas Stracke, Composition of the depleted mantle Geochemistry Geophysics Geosystems. ,vol. 5, ,(2004) , 10.1029/2003GC000597
Eric Hellebrand, Jonathan E. Snow, Henry J. B. Dick, Albrecht W. Hofmann, Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites Nature. ,vol. 410, pp. 677- 681 ,(2001) , 10.1038/35070546
I.J. Parkinson, J.A. Pearce, M.F. Thirlwall, K.T.M. Johnson, G. Ingram, Trace element geochemistry of peridotites from the Izu-Bonin-Mariana Forearc, Leg 125 Ocean Drilling Program. pp. 487- 506 ,(1992) , 10.2973/ODP.PROC.SR.125.183.1992
Allison Gale, Colleen A. Dalton, Charles H. Langmuir, Yongjun Su, Jean-Guy Schilling, The mean composition of ocean ridge basalts Geochemistry Geophysics Geosystems. ,vol. 14, pp. 489- 518 ,(2013) , 10.1029/2012GC004334
Julian A. Pearce, Role of the sub-continental lithosphere in magma genesis at active continental margins Continental Basalts and Mantle Xenoliths. pp. 230- 249 ,(1983)
Chen Chen, Ben-Xun Su, Ibrahim Uysal, Erdi Avcı, Peng-Fei Zhang, Yan Xiao, Yong-Sheng He, Iron isotopic constraints on the origin of peridotite and chromitite in the Kızıldağ ophiolite, southern Turkey Chemical Geology. ,vol. 417, pp. 115- 124 ,(2015) , 10.1016/J.CHEMGEO.2015.10.001
Henry J. B. Dick, Thomas Bullen, Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas Contributions to Mineralogy and Petrology. ,vol. 86, pp. 54- 76 ,(1984) , 10.1007/BF00373711