Approximate first-order and second-order directional derivatives f a marginal function in convex optimization

作者: J. -B. Hiriart-Urruty

DOI: 10.1007/BF00938593

关键词: Convex functionPseudoconvex functionConvex conjugateProper convex functionCombinatoricsSubderivativeConvex setConvex analysisMathematicsLogarithmically convex function

摘要: Given a convex functionf:ℝ p ×ℝ q → (−∞, +∞], the marginal function φ is defined on ℝ by φ(x)=inf{f(x, y)|y∈ℝ }. Our purpose in this paper to express approximate first-order and second-order directional derivatives of atx 0 terms those off at (x 0,y 0), wherey 0 any element for which φ(x 0)=f(x 0,y 0).

参考文章(8)
Pierre Jean Laurent, Approximation et optimisation Hermann. ,(1972)
J.-B. Hiriart-Urruty, Limiting behaviour of the approximate first order and second order directional derivatives for a convex function Nonlinear Analysis-theory Methods & Applications. ,vol. 6, pp. 1309- 1326 ,(1982) , 10.1016/0362-546X(82)90106-7
J. -J. Strodiot, V. Hien Nguyen, Norbert Heukemes, ε-Optimal solutions in nondifferentiable convex programming and some related questions Mathematical Programming. ,vol. 25, pp. 307- 328 ,(1983) , 10.1007/BF02594782
J.-B. Hiriart-Urruty, Calculus Rules on the Approximate Second-Order Directional Derivative of a Convex Function SIAM Journal on Control and Optimization. ,vol. 22, pp. 381- 404 ,(1984) , 10.1137/0322025
J. B. Hiriart-Urruty, Approximating a Second-Order Directional Derivative for Nonsmooth Convex Functions SIAM Journal on Control and Optimization. ,vol. 20, pp. 783- 807 ,(1982) , 10.1137/0320057
S. S. Kutateladze, ε-Subdifferentials and ε-optimality Siberian Mathematical Journal. ,vol. 21, pp. 404- 411 ,(1981) , 10.1007/BF00968185