Strong Convexity and Directional Derivatives of Marginal Values in Two-Stage Stochastic Programming

作者: Darinka Dentcheva , Werner Römisch , Rüdiger Schultz

DOI: 10.1007/978-3-642-88272-2_2

关键词:

摘要: Two-stage stochastic programs with random right-hand side are considered. Verifiable sufficient conditions for the existence of second-order directional derivatives marginal values presented. The central role strong convexity expected recourse function as well a Lipschitz stability result optimal sets is emphasized.

参考文章(19)
J. -B. Hiriart-Urruty, Approximate first-order and second-order directional derivatives f a marginal function in convex optimization Journal of Optimization Theory and Applications. ,vol. 48, pp. 127- 140 ,(1986) , 10.1007/BF00938593
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
Peter Kall, János Mayer, Stochastic Linear Programming ,(1975)
Roger J.-B. Wets, Stochastic Programs with Fixed Recourse: The Equivalent Deterministic Program SIAM Review. ,vol. 16, pp. 309- 339 ,(1974) , 10.1137/1016053
K. H. Hoffmann, H. J. Kornstaedt, Higher-order necessary conditions in abstract mathematical programming Journal of Optimization Theory and Applications. ,vol. 26, pp. 533- 568 ,(1978) , 10.1007/BF00933151
A. Shapiro, On concepts of directional differentiability Journal of Optimization Theory and Applications. ,vol. 66, pp. 477- 487 ,(1990) , 10.1007/BF00940933
A. Ben-Tal, J. Zowe, Directional derivatives in nonsmooth optimization Journal of Optimization Theory and Applications. ,vol. 47, pp. 483- 490 ,(1985) , 10.1007/BF00942193
Alexander Shapiro, Asymptotic analysis of stochastic programs Annals of Operations Research. ,vol. 30, pp. 169- 186 ,(1991) , 10.1007/BF02204815
Roberto Cominetti, Metric regularity, tangent sets, and second-order optimality conditions Applied Mathematics and Optimization. ,vol. 21, pp. 265- 287 ,(1990) , 10.1007/BF01445166