An efficient and accurate approach of circular object detection in color images

作者: Yangxing Liu , Satoshi Goto

DOI: 10.1016/J.COMPELECENG.2014.04.019

关键词: PixelMathematicsTime complexityArtificial intelligenceComputer visionColor imageImage gradientEdge detectionBoundary (topology)Enhanced Data Rates for GSM EvolutionObject detection

摘要: A fully automatic approach of color image edge detection is proposed.The algorithm integrated with a novel circle efficiently.Three parameters are estimated attractively low time complexity and memory requirement.Objects incomplete or concentric boundary in real images without any prior knowledge can be located. Object critical step many recognition systems. In this paper, we discuss the problem circular shape object still images. An isotropic detector merged spatial information region based analysis employed to extract obtain accurate gradient pixels, which assures high accuracy subsequent detection. Then three efficiently only one 2-dimensional accumulator array 1-dimensional array, greatly reduces storage requirements our approach. Experimental results show that method robust locating objects complete knowledge.

参考文章(18)
G. A. Watson, Least Squares Fitting of Circles and Ellipses to Measured Data Bit Numerical Mathematics. ,vol. 39, pp. 176- 191 ,(1999) , 10.1023/A:1022381510996
Yong-Huai Huang, Kuo-Liang Chung, Wei-Ning Yang, Shih-Hsuan Chiu, Efficient symmetry-based screening strategy to speed up randomized circle-detection Pattern Recognition Letters. ,vol. 33, pp. 2071- 2076 ,(2012) , 10.1016/J.PATREC.2012.06.016
J.Y. Goulermas, P. Liatsis, Genetically fine-tuning the Hough transform feature space, for the detection of circular objects Image and Vision Computing. ,vol. 16, pp. 615- 625 ,(1998) , 10.1016/S0262-8856(98)00075-4
Nahum Kiryati, Heikki Kälviäinen, Satu Alaoutinen, Randomized or probabilistic Hough transform: unified performance evaluation scandinavian conference on image analysis. ,vol. 21, pp. 1157- 1164 ,(2000) , 10.1016/S0167-8655(00)00077-5
N. Chernov, C. Lesort, Least Squares Fitting of Circles Journal of Mathematical Imaging and Vision. ,vol. 23, pp. 239- 252 ,(2005) , 10.1007/S10851-005-0482-8
Teh-Chuan Chen, Kuo-Liang Chung, An Efficient Randomized Algorithm for Detecting Circles Computer Vision and Image Understanding. ,vol. 83, pp. 172- 191 ,(2001) , 10.1006/CVIU.2001.0923
Sung Joon Ahn, Wolfgang Rauh, Hans-Jürgen Warnecke, Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola Pattern Recognition. ,vol. 34, pp. 2283- 2303 ,(2001) , 10.1016/S0031-3203(00)00152-7
Kuo-Liang Chung, Yong-Huai Huang, Shi-Ming Shen, Andrey S. Krylov, Dmitry V. Yurin, Ekaterina V. Semeikina, Efficient sampling strategy and refinement strategy for randomized circle detection Pattern Recognition. ,vol. 45, pp. 252- 263 ,(2012) , 10.1016/J.PATCOG.2011.07.004
Victor Ayala-Ramirez, Carlos H. Garcia-Capulin, Arturo Perez-Garcia, Raul E. Sanchez-Yanez, Circle detection on images using genetic algorithms Pattern Recognition Letters. ,vol. 27, pp. 652- 657 ,(2006) , 10.1016/J.PATREC.2005.10.003