Least Squares Fitting of Circles and Ellipses to Measured Data

作者: G. A. Watson

DOI: 10.1023/A:1022381510996

关键词:

摘要: … to the special case of least squares approximation by circles, ellipses and rotated ellipses, and … The origin of the least squares problem is explained in [20]: the essentials of that analysis …

参考文章(19)
Daniel S. Zwick, Applications of orthogonal distance regression in metrology Proceedings of the second international workshop on Recent advances in total least squares techniques and errors-in-variables modeling. pp. 265- 272 ,(1997)
Walter Gander, David Sourlier, Rolf Strebel, A comparison of orthogonal least squares fitting in coordinate metrology Proceedings of the second international workshop on Recent advances in total least squares techniques and errors-in-variables modeling. pp. 249- 258 ,(1997)
James P. Boyle, Richard L. Dykstra, A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces Advances in Order Restricted Statistical Inference. pp. 28- 47 ,(1986) , 10.1007/978-1-4613-9940-7_3
Helmuth Späth, Orthogonal least squares fitting by conic sections Proceedings of the second international workshop on Recent advances in total least squares techniques and errors-in-variables modeling. pp. 259- 264 ,(1997)
H. Späth, Least-squares fitting by circles Computing. ,vol. 57, pp. 179- 185 ,(1996) , 10.1007/BF02276879
Walter Gander, Gene Howard Golub, Rolf Strebel, Fitting of circles and ellipses: Least squares solution ETH, Eidgenössische Technische Hochschule Zürich, Departement Informatik, Institut für Wissenschaftliches Rechnen. ,vol. 217, ,(1994) , 10.3929/ETHZ-A-000955292
Norbert Gaffke, Rudolf Mathar, A cyclic projection algorithm via duality Metrika. ,vol. 36, pp. 29- 54 ,(1989) , 10.1007/BF02614077
M. M. Dowling, P. M. Griffin, K.-L. Tsui, C. Zhou, Statistical issues in geometric feature inspection using coordinate measuring machines Technometrics. ,vol. 39, pp. 3- 17 ,(1997) , 10.2307/1270764