Group theoretic methods for approximate invariants and Lagrangians for some classes of y″+εF(t)y′+y=f(y,y′)

作者: T Feroze , A.H Kara

DOI: 10.1016/S0020-7462(00)00111-6

关键词: Homogeneous spaceInvariant (mathematics)Analytical mechanicsTopologyMathematicsConservation lawGroup theoryLie groupNoether's theoremSymmetry groupPure mathematics

摘要: Abstract Some recent results on the Lie symmetry generators of equations with a small parameter and relationship between symmetries conservation laws for such are used to construct first integrals Lagrangians autonomous weakly non-linear systems, y″+eF(t)y′+y=f (y,y′) . An adaptation theorem that provides point leave invariant functional involving Lagrangian is presented. A detailed example illustrate method given (and other examples discussed). The (approximate) generators, invariants maintain perturbation order ‘small parameter’ stipulated in equation — this case.

参考文章(13)
AH Kara, FM Mahomed, G Unal, Approximate Symmetries and Conservation Laws with Applications International Journal of Theoretical Physics. ,vol. 38, pp. 2389- 2399 ,(1999) , 10.1023/A:1026684004127
N. H. Ibragimov, A. H. Kara, F. M. Mahomed, Lie–Bäcklund and Noether Symmetries with Applications Nonlinear Dynamics. ,vol. 15, pp. 115- 136 ,(1998) , 10.1023/A:1008240112483
Willy Sarlet, Invariance and conservation laws for Lagrangian systems with one degree of freedom Journal of Mathematical Physics. ,vol. 19, pp. 1049- 1054 ,(1978) , 10.1063/1.523767
V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, Perturbation methods in group analysis Journal of Mathematical Sciences. ,vol. 55, pp. 1450- 1490 ,(1991) , 10.1007/BF01097534
A. H. Kara, F. M. Mahomed, Relationship between Symmetries andConservation Laws International Journal of Theoretical Physics. ,vol. 39, pp. 23- 40 ,(2000) , 10.1023/A:1003686831523
Emmy Noether, Invariant Variation Problems Transport Theory and Statistical Physics. ,vol. 1, pp. 186- 207 ,(1971) , 10.1080/00411457108231446
A. H. Kara, F. M. Mahomed, Classification of first-order Lagrangians on the line International Journal of Theoretical Physics. ,vol. 34, pp. 2267- 2274 ,(1995) , 10.1007/BF00673841
Harry H. Denman, Approximate invariants and Lagrangians for autonomous, weakly non-linear systems—II. Linear friction International Journal of Non-linear Mechanics. ,vol. 33, pp. 301- 314 ,(1998) , 10.1016/S0020-7462(97)00014-0
Harry H. Denman, Approximate invariants and Lagrangians for autonomous, weakly non-linear systems International Journal of Non-linear Mechanics. ,vol. 29, pp. 409- 419 ,(1994) , 10.1016/0020-7462(94)90011-6