Approximate invariants and Lagrangians for autonomous, weakly non-linear systems

作者: Harry H. Denman

DOI: 10.1016/0020-7462(94)90011-6

关键词:

摘要: Abstract A procedure is given for the calculation of approximate invariants autonomous, weakly non-linear systems with one degree freedom, based on an expansion in parameters. From such invariant, Lagrangian and Hamiltonian describing system can be generated. The damped harmonic oscillator, Duffing equation van der Pol are used as examples.

参考文章(16)
Leopold Alexander Pars, A Treatise on Analytical Dynamics ,(1981)
P. G. L. Leach, Quadratic Hamiltonians: The four classes of quadratic invariants, their interrelations and symmetries Journal of Mathematical Physics. ,vol. 21, pp. 32- 37 ,(1980) , 10.1063/1.524329
Harry H. Denman, Time-Translation Invariance for Certain Dissipative Classical Systems American Journal of Physics. ,vol. 36, pp. 516- 519 ,(1968) , 10.1119/1.1974957
H. Ralph Lewis, P. G. L. Leach, Serge Bouquet, Marc R. Feix, Representations of one‐dimensional Hamiltonians in terms of their invariants Journal of Mathematical Physics. ,vol. 33, pp. 591- 598 ,(1992) , 10.1063/1.529794
P. Havas, The range of application of the lagrange formalism — I Il Nuovo Cimento. ,vol. 5, pp. 363- 388 ,(1957) , 10.1007/BF02743927
Harry H. Denman, On Linear Friction in Lagrange's Equation American Journal of Physics. ,vol. 34, pp. 1147- 1149 ,(1966) , 10.1119/1.1972535
H. Bateman, On Dissipative Systems and Related Variational Principles Physical Review. ,vol. 38, pp. 815- 819 ,(1931) , 10.1103/PHYSREV.38.815
G. A. MILLER, An Introduction to the Lie Theory of One-Parameter Groups Science. ,vol. 34, pp. 924- 924 ,(1911) , 10.1126/SCIENCE.34.887.924
Harry H. Denman, Invariance and Conservation Laws in Classical Mechanics. II Journal of Mathematical Physics. ,vol. 6, pp. 1611- 1616 ,(1965) , 10.1063/1.1704843